
Revenue Improvement Through Demand-Dependent
Pricing of Network Services

A Thesis Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia

In Partial Fulfillment of the Requirements for the Degree
Master of Science (Systems Engineering)

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

David M. Sanders

MAY 2000

OTIC QUALITY INSPECTED 3 20000522 051

11

ABSTRACT

This thesis addresses the issue of efficient resource allocation in broadband

networks through the pricing of guaranteed services. Resource allocation in networks is

typically achieved through technical methods such as scheduling, routing, and admission

control, however these techniques are not predictive in terms of the expectation of

rewards based upon variable demands. This work shows that revenue improvement can

occur in this network environment when a dynamic pricing policy is applied as opposed

to optimal static pricing. The network model used is that of a broadband channel with

multiple classes of service, each of which has a Poisson arrival process with exponential

service times, where the arrival rate is a function of the current price and a partially

observed Markov chain. The optimization model is a continuous time, average-reward,

partially observed Markov decision process, with the state defined as the profile of

current active sessions (of various types) and the probability distributions over the

demand states for each service class. We have developed a heuristic that seeks

improvement of the objective based upon the probability that the service class is in one of

several possible demand states. Our heuristic involves a state estimation procedure to

determine (1) when the system has transitioned to a new demand state and (2) when and

what control (price) should be applied to improve revenue.

This work contributes to the large body of recent research into network pricing

which primarily examines the concept from a static point of view. Most analysis in this

area of research assume a constant load upon the system and does not explicitly

accommodate the stochastic nature of arrivals and departures, as does our heuristic. In the

Ill

more common network pricing formulation, demand is assumed to be a constant and

known function of price, and prices are adjusted to find an optimal mix of the user

classes. In contrast, our formulation takes into account the stochastic nature of demand

and takes advantage of the gains in revenue which can be made from fluctuations in

demand.

Our heuristic has been "tested" against optimal static prices in several scenarios of

varying demand. Our computational study involves a broadband network providing two

distinct service classes and has shown the potential for revenue increase between 10%

and 78%. It is surprising that significant gains such as these are possible given that in

each scenario tested, any particular demand state profile (interpreted as a perfect

information problem) exhibits very little gain in dynamic pricing. Additionally, the state

estimation procedure we have developed is capable of correct classification rates as high

as 96%, with the lowest observed rate being 62%, at least for the scenarios we have

tested.

IV

ACKNOWLEDGEMENTS

I would like to express sincere gratitude to my Advisor, Stephen Patek, without

whom this thesis would not have been completed. His advice, encouragement, and

complete understanding of the subject were indispensable. He was always available to

assist me and that has made a substantial difference in the quality of this work.

I would also like to thank my dearest wife, Monique, who has always supported

me whole-heartedly in my endeavors. Without her not only this thesis but most of the

accomplishments in my life would not have been completed.

Table of Contents

APPROVAL SHEET i

ABSTRACT ii

ACKNOWLEDGEMENTS iv

Table of Contents v

Table of Figures vii

Table of Tables viii

Chapter 1. Introduction 1
1.1 MOTIVATION 1
1.2 PROBLEM DEFINITION 3
1.3 RESEARCH CONTRIBUTIONS AND OBJECTIVES 4
1.4 THESIS ORGANIZATION 5

Chapter 2. Background and Related Research 7
2.1 CONGESTION AND QOS ON NETWORKS 7
2.2 TRADITIONAL PRICING TECHNIQUES 11
2.3 CONGESTION PRICING 12
2.4 MARKOV DECISION PROCESSES AND DYNAMIC PROGRAMMING 14

2.4.1 Discrete-time, Finite-horizon Dynamic Programming Models and MDPs 15
2.4.2 Discrete-time, Infinite-horizon Models with an Average-Reward Criterion 17
2.4.3 Continuous-Time, Average-Reward Decision Processes and Uniformization

18
2.5 CONGESTION PRICING OF NETWORK SERICES: THE[PT99] MODEL 20

Chapter 3. Problem Formulation: The Case of Partially Observed
Demand 27

3.1 A MODEL FOR PARTIALLY OBSERVED, STOCHASTICALLY VARYING DEMAND 28
3.1.1 The Hidden Markov Chain 28
3.1.2 The Rate-Price Relationship for a Given Demand State 30

3.2 PRICING AS A PARTIALLY OBSERVED MARKOV DECISION PROCESS 30
3.3 STATE SPACE ILLUSTRATION / COMPLEXITY ISSUES 32

Chapter 4. A Heuristic for the POMDP 35

VI

4.1 FORMAL DEFINITION OF THE HEURISTIC 36
4.2 SOLUTIONS TO MDP'S 36
4.3 DEMAND STATE ESTIMATION 38

Chapter 5. On Computing Optimal Static Prices 42
5.1 OPTIMAL STATIC PRICES FOR THE CASE OF KNOWN, TIME-INVARIANT DEMAND.... 42
5.2POMDP REFORMULATION 43

Chapter 6. Examples, Part 1 46
6.1 EXAMPLE 1 46

6.1.1 Problem Data 46
6.1.2 Results from the DP Calculations 47
6.1.3 Verification of Results Through Simulation 48

6.2 EXAMPLE II 49
6.2.1. Problem Data 49
6.2.2 Results from the DP Calculations 49
6.2.3 Verification Through Simulation 50

6.3 EXAMPLE III 51
6.3.1 Problem Data 51
6.3.2 Results from the DP Calculations 51

Chapter 7. Examples, Part 2 53
7.1 COMPARISON METHODOLOGY 53
7.2 EXAMPLE 1 55
7.3 EXAMPLE II 57
7.4 EXAMPLE III 59
7.5 DISCUSSION: 60

Chapter 8. Conclusions and Recommendations 64
8.1 CONCLUSIONS 64
8.2 RECOMMENDATIONS FOR FUTURE WORK 65

BIBLIOGRAPHY 67

A Computer Code 69
A-4: SIMULATION OF HEURISTIC 69

Vll

Table of Figures

Figure 2-1 Markov Chain 19

Figure 2-2 Markov Chain with self-transitions 19

Figure 2-3 Broadband Network Model 21

Figure 3-1 Demand-State Modeling 29

Figure 3-2 Demand -State Illustration 30

Figure 7-1 Initialization Bias 54

Vlll

Table of Tables

I: Model Parameters 47

I: MDP Optimal Dynamic and Static Pricing 47

I: Simulation Validation 48

: II: Model Parameters 49

II: MDP Optimal Dynamic and Static Pricing 50

! II: Simulation Validation 50

III: Model Parameters 51

III: MDP Optimal Dynamic and Static Pricing 51

; I: comparison of Dynamic and Static Pricing 56

I: Steady State Probabilities 56

; I: Alternative Demand State Estimation Results 57

: I: Static Policy Validation 57

II: comparison of Dynamic and Static Pricing 58

: II: Steady State Probabilities 58

: II: Alternative Demand State Estimation Results 59

: II: Static Policy Validation 59

! Ill: Comparison of Dynamic and Static Pricing 59

Table 7-10 Example III: Steady State Probabilities 60

Table 7-11 Consolidated Results - Dynamic vs Static Pricing 60

Table 7-12 Calcuation of p 61

Table 7-13 Consolidated Results - Comparison of Alternate Estimation Procedure 63

Table 7-14 Hypothesis Tests of Comparison 63

Table 6-1 Example

Table 6-2 Example

Table 6-3 Example

Table 6-4 Example

Table 6-5 Example

Table 6-6 Example

Table 6-7 Example

Table 6-8 Example

Table 7-1 Example

Table 7-2 Example

Table 7-3 Example

Table 7-4 Example

Table 7-5 Example

Table 7-6 Example

Table 7-7 Example

Table 7-8 Example

Table 7-9 Example

IX

List Of Symbols

^-0,1:

a, -\
bi ►

aci

bc,: J
m:
N(t)

M
Ui

R
Ri
n(N(t))
dsj

v

gfcoCO

f(k,u)(t)

Arrival rate of class of service i
Maximum arrival rate for class i

demand function parameters

service rate for class i
= {ni(t),.. .,nM(t)} System state representation, number of users, class i,

in system at time t
Number of service classes
price of service, class i
Link bandwidth [Mbps]
effective bandwidth requirement, class i [Mbps]
Pricing policy, dependent on system state
demand state of class i
maximum transition rate of Markov Chain
probability of transition from ds=k to ds=i during time period x
probability of arrival occurring during time x, given ds=k and price = u

(if an arrival has occurred)
probability of no arrival occurring during time x, given ds=k and price = u

(if a departure has occurred)
transition rate of demand state, class i, from state j to state j+1
transition rate of demand state, class i, from state j to state j-1

maximum (increasing) demand transition rate, class i

maximum (decreasing) demand transition rate, class i

Chapter 1. Introduction

1.1 Motivation

Computer networks were originally developed for the Department of Defense

(DoD) in the mid 1960s to provide a secure command and control system in the event of

nuclear war [T96]. Since that time the use of computer networks has grown at an amazing

pace, with the current number of users more than doubling each year [GSW95a].

Networks are now a significant part of the daily lives of many people and the expanded

role of computers and their networks in applications such as email, file sharing, World

Wide Web, and video teleconferencing have irrevocably changed both our business and

personal lives. As these networks become more involved in the business world they must

adapt to the requirements of normal business practices - such as the necessity to be cost

effective and efficient. In order to become cost effective companies which own these

networks must have a mechanism for controlling the use of the resource to ensure it is not

'wasted', much in the same manner that any other resource is managed. In this way

applications that are more beneficial to a business's bottom line will be admitted onto a

network before applications that are less profitable.

This thesis deals with the issue of efficient resource allocation in broadband

networks. The act of controlling the use of the network resource, bandwidth, is through

bandwidth management. Currently this is achieved through technical mechanisms such as

scheduling, routing, and admission control, however these measures are limited in the

face of growing demand. The increase in demand for the transport of data on the network

causes congestion, which slows the network and at times can cause the network to fail

[T96]. When the network becomes congested both the throughput rate and transit delay

are adversely effected. This causes the quality and usefulness of inelastic applications

(which are delay sensitive, such as real time audio and video) to become significantly

degraded. In order for these applications to be effective we must be able to manage the

available bandwidth to accommodate the desired applications Quality of Service (QoS).

In particular we are interested in developing a methodology that will allow the use

of inelastic applications such as Vide-On-Demand (VOD) or Video Tele-conferencing

(VTC). While these services are currently available in various formats, they are severely

limited by the congestion experienced on data networks. While a VTC application can

work through almost any Internet Service Provider the quality of the service can vary

tremendously as conditions upon the underlying network change dynamically under a

bursty traffic load. This degraded performance may be satisfactory for a grandparent to

speak and see grandchildren through a VTC on a Saturday morning, however it can cause

difficulties in business and academic conferences on busier times of the week. We

believe that it is worthwhile to enhance this service so that routine, high quality VTC is

available for the people and businesses willing to pay the cost of reserving the necessary

resources.

VOD also currently works in some instances - such as inside hotels or on very

small, privately owned distribution networks. The cost of this service runs around $10.00

a movie, and generally the service cannot be adjusted after it begins playing (in the

version of VOD discussed by [T96], for example, you can pause a movie or rewind, or do

anything you would be able to do if you had rented a video cassette and put it in your

VCR). The capability does not currently exist to expand this enhanced service into a

medium size community, even though the technology exists to do so [T96]. The reason

that it cannot be used in a community setting is because of the cost of improving the

physical lines into the homes to increase bandwidth and because of the network

congestion that would result from its use. The cost from the vendor standpoint could be

kept to somewhere around $4.00 a movie [T96] - so if we could control the congestion

which such a service would generate it could make it quite a bit easier to watch a recently

released movie for around the same price it costs now at the local rental store.

1.2 Problem definition

This thesis develops a methodology to allocate bandwidth in order to allow

multiple types of traffic, with associated QoS parameters, to operate efficiently on a

single network. The technique we will use is that of a pricing mechanism for services,

which will affect demand, and through the use of admission control. Our research seeks

to expand work done recently by [PT99] in which a network resource allocation problem

was cast as a dynamic programming model in order to maximize the revenue of the

network owner through a pricing mechanism that influenced demand. One of the

strongest results of their work showed that in the case of many small users (e.g. users

requiring less than 5% of the total bandwidth) static pricing was nearly optimal (within

2% of the optimal static pricing policy) within the class of dynamic pricing policies. We

believe that this was due to the way they modeled demand as a time-invariant, known rate

of request of arrivals that varied only by price. While the [PT99] model allows an elegant

structural analysis, the actual demand function would vary greatly in time - and most

likely we would not be able to ascertain all of the factors which influence this demand.

Therefore we will assume a stochastically changing demand that can be modeled as a

hidden Markov chain.

The method we develop will provide efficient resource allocation, at least in terms

of revenue maximization for the service provider. That is, we define 'efficient' in a

monopolistic sense in that those who are willing to pay the highest price for a service

must value it most, and therefore will receive the service. By 'guaranteed services' we

mean that if a user is allowed access he or she will have reserved for his use the required

bandwidth for the time period required to complete the requested action. The method we

will use in attempting to control the congestion is similar to congestion pricing, although

in this context the term demand-dependent pricing is more accurate (since admitted

customers will be guaranteed to get what they pay for there will be no congestion on the

system). To do this we will develop a demand dependent pricing heuristic which will

allocate resources in a broadband network, based upon partial observations of demand.

In addition, we will make the assumption that a service class can be categorized

by its required 'effective bandwidth' [KG99] and we will make admission control

decisions based upon this assumption. We will also assume that potential users can be

informed of price changes instantaneously, so that they will not be able to order at a price

that is not currently in effect.

1.3 Research Contributions and Objectives

The technical contributions we will make are (1) to generalize the model of

[PT99] to the case where the demand functions are unknown and changing and (2) to

determine whether demand uncertainty of this type widens the gap between the

performance of optimal fixed (static) prices and optimal dynamic pricing policies. We

suspect that an increase in revenue can be achieved by utilizing dynamic congestion tolls

over the use of a static pricing policy when the demand functions are imperfectly

observed and changing in time.

Our objective is to develop a methodology which can then be implemented to

allow the use of inelastic services over a resource-constrained data network. In addition,

the heuristic has broader applicability and could be converted to other domains where

demand modeling is similarly difficult and resource constraints exist.

1.4 Thesis Organization

This thesis is organized into 8 chapters. Chapter 2 will discuss the background of

this problem, to include

• the causes and current remedies of network congestion,

• pricing mechanisms for network and similar services,

• dynamic programming theory for Markov Decision Processes (MDPs)

and Partially Observed Markov Decision Processes (POMDPs),

• the work of [PT99], from which this work is inspired

Chapter 3 will expand the model developed by [PT99] by including our uncertain, time-

varying demand model and converting their formulation to fit the POMDP. Chapter 4

will explain the heuristic we have developed which provides a sub-optimal solution to the

POMDP. We will discuss the computer code we developed to solve the problem and

make some observations upon the data we have collected. We will also discuss the

classification rule we used to estimate hidden demand states. Chapter 5 will show the

development and solution technique for optimal static prices. Chapter 6 will analyze the

differences between the optimal static and optimal dynamic prices for the case of known

demand. In addition we will show comparison of these methods to the simulation we will

later build in order to verify the calculations. Chapter 7 will explain the methodology that

we used to compare the heuristic to an optimal static priced system for the case of

unknown demand. Here we will provide the results of the comparison and a discussion of

those results. Chapter 8 will present our conclusions and some recommendations for

future work. Following Chapter 8 we include the Bibliography, and in the appendices the

computer code we developed.

Chapter 2. Background and Related Research

In order to achieve our objectives it has been necessary to conduct research in

several areas. We will begin by discussing network congestion and the techniques by

which congestion is typically managed. Next, we will look at current pricing techniques

for network services. Following this we will discuss dynamic programming for Markov

Decision Processes (MDPs) and at the recent work of [PT99].

2.1 Congestion and QoS on Networks

Congestion results in a network when there is more load than can be adequately

handled by the capacity of the network. An increase in congestion causes the Quality-of-

Service (QoS) offered by the network, as measured in terms of transit delay (latency) and

the variance in that delay (jitter), to be degraded. In the Internet, the TCP/IP protocol

handles the administrative duty of congestion control by dynamically allocating

bandwidth and deleting data when necessary [MSM097] - both of which obviously

affect the QoS. This results in the loss of time to network users and has resulted in a

desire for increased bandwidth and QoS guarantees.

Expansion of capacity can be affected in several ways: increasing current

transmission lines and associated hardware, enhancements to the physical layer

technology that transmits the data, or advances in network or transport layer protocols.

We will examine each of these in turn.

Increasing Capacity: Increasing the capacity of the physical layer (i.e.

transmission lines and associated hardware) is a fast and easy, though costly, solution.

Unfortunately it is also not an effective solution for very long. The "throw more

bandwidth at the problem" solution is analogous to adding a lane for congested vehicular

traffic; the extra lane only causes more people to feel that there are sufficient resources

for traffic, so that new traffic as well as the traffic suppressed by the previous congestion

is compounded, until the system is again in a congested state. Work by [GC98] has

shown that the effect of adding capacity alone to a congested data network system is to

increase the traffic to a point where the congestion and associated social costs are higher

than they were initially. This would then require additional bandwidth in a never-ending

cycle. This type of result is familiar in economic theory and is referred to as a 'tragedy of

the commons' [MB99, GSW95] where the 'common' good (bandwidth) is abused by

everyone because users do not pay the total cost for its use. Thus capacity expansion

alone can be seen as only a temporary solution.

Increasing technology: Work is constantly being done to improve the physical

layer of networks to make the transit of data faster, and thus to mitigate congestion. The

cost of such technology is falling also - you can buy 10 times the bandwidth today for

1/10 the price of 5 years ago [CP99]. Unfortunately, although the cost of network

technology is constantly falling, the increasingly high speed at which data can be

transmitted is not keeping pace with the increases in demand [CP99, GC98, KA98].

Perhaps the biggest issue in this area is that the main component to the cost of increasing

bandwidth to home users is the replacement of the 'local loops' that physically connect

homes to the nearest router. This cost is high not because of the cost of the new lines but

because of the digging to replace or put in these new lines [T96]. Without replacing these

lines the benefits from other technological increases cannot be fully realized. Because of

9

this the increases in technology are not always a cost-effective solution to the problem of

needing to increase bandwidth.

Improving Protocols: Decreasing load on congested lines through improvement of

transport techniques, or protocols, is another area where many advances have been made.

Routing of data around congestion is an effective way of dealing with congestion in a

large network [T96]. This method works by dynamically computing the best route

through a network by utilizing current measures of the transit delay, throughput rate, or

number of hops. One effect of this is that the route the traffic takes to avoid congestion is

generally slower than the optimal route. This is irrelevant to elastic traffic, such as FTP,

but for delay sensitive traffic, such as telephony, this can have a significant impact. For

inelastic traffic not only the transit delay but also the jitter (the variance of the transit

delay) must be minimized. An application such as a VTC is significantly degraded when

the route is dynamically changed often - thus this solution is not effective for all

applications. With the use of a connection oriented network technology such as ATM,

routing can be effective in ensuring QoS to applications that have already been

'connected', but cannot help new users when congestion is already present (because they

cannot obtain service which will support their QoS requirements). Other technological

improvements in traffic protocols, such as flow shaping, also suffer from similar

problems. Flow shaping controls the rate at which traffic is transmitted to ensure a

constant flow [T96] - it does this by buffering data and releasing it at a certain rate. This

is adequate if only minimizing jitter is required, but if minimizing transit delay is

imperative then this technique may only compound the problem. The complete solution

10

to the problem of eliminating congestion, therefore, is not an increase in bandwidth

through either physical or technological methods.

QoS guarantees are commitments by a network provider to deliver some standard

of service - such as reliability, throughput rate, transit delay, or jitter. The ability of a

network to meet this standard is dependent upon the available resources. QoS guarantees

with respect to transit delay and jitter are normally pursued through previously discussed

methods, or through flow control and admission control. Flow control is the regulation of

the speed at which the sending device transmits data. This method only works when there

is a large tolerance in transit delay. Admission control, on the other hand, only allows

traffic flow when there are available resources to support the QoS guarantee. To utilize

admission control two things are necessary, (1) available resources and (2) user demand

for the service. From this concept springs forth the idea of congestion-based pricing of

network services - where the cost of using bandwidth is based upon the congestion

currently experienced in the system [BRS99, GC98, GSW95, GSW95d, KA98, KG99,

KM99, KMB99, PT98]. Instead of changing the system to meet the demand, this

technique attempts to change the demand to meet the system. Utilizing this type of

pricing scheme ensures that only users willing to pay the actual cost (to include additional

cost induced by congestion) actually use the network - thus avoiding a tragedy of the

commons. Before we examine this 'congestion pricing' in detail, we will review some of

the more common pricing scenarios for Internet/network service, to see why they do not

efficiently deal with congestion.

11

2.2 Traditional Pricing Techniques

Typical Internet Service Provider (ISP) pricing strategies today allow a user

unlimited access for a fixed monthly fee of $10 - $25. Once the monthly fee is paid there

is no reason for the consumer to stop accessing the service - indeed this type of pricing

scheme has been shown to increase the amount of use artificially (people feel they are

getting more for their money if they use the service more) [GC98]. Because of this, the

fixed amount per month pricing scheme, although currently popular, has been shown to

be inefficient. A current happenstance in the field is increased pricing for services that

offer higher bandwidth - such as DSL or cable network connections. These types of

networks do not necessarily guarantee higher throughput rates, but are capable of

providing this decreased transit delay for larger amounts of data.

Interestingly, it used to be the case that many ISP's would have a fixed fee per

month for access, plus a charge proportional to access time, providing an incentive to

eliminate idle access time. Unfortunately this type of pricing scheme is also inefficient.

Consider, for example, a user who logs onto an ISP, read his email for 10-20 minutes,

responds to several of those emails, and then logs off after 45 minutes. The user had

access for 45 minutes, but was actually only sending or receiving data for several

seconds. Thus, again, we have an inefficient system, because the person who logs on for

45 minutes and utilizes every second of it to download a new demo game would pay the

same amount as the user for email did. With the rising popularity of America On-Line

(AOL), which was among the first to charge a fixed amount per month for unlimited

access, this type of pricing scheme became very unpopular and has since disappeared.

12

Many businesses utilize a method of purchasing blocks of bandwidth from

network providers. These purchases can be in the form of leased lines or by utilizing

virtual leased lines [CP99]. Because the business has the capability of specifying what

traffic is allowed to go onto a link from its end, this technique can be effective in

reducing congestion (or even eliminating it), but some portion of time the network would

not be at it's optimal load, and thus there is a form of 'waste'. The network owner could

have sold this available resource and increased his revenue or the leasee could have either

're-sold' this excess or could have reduced the amount of bandwidth it had contracted for,

thus reducing costs.

Recently several ISP's have offered completely free connection service. The ISP

is able to do this because of advertising monies paid to it by companies to put ads on their

websites, and subsequently upon the desktops of the subscribers. While this method is

likely to become popular with consumers who do not desire tight QoS constraints, we

feel that this type of provider will not be able to offer the services we are interested in due

to the cost of the enhanced hardware, and so while this ISP may be useful for email or

limited WWW and file swapping, it will not be effective in providing inelastic service.

2.3 Congestion Pricing

In congestion pricing users are charged based upon both the amount of traffic they

produce and the ambient congestion that is currently experienced in the network.

Typically, the charge increases with ambient congestion in an attempt to influence the

demand. There are several objectives that have been presented when utilizing a

congestion-pricing scenario, namely the maximization of some form of network utility.

This utility has been defined in various ways - as the revenue of the network provider, as

13

the overall benefit to the users, as the total throughput rate of traffic. In the context of

broadband QoS networks, congestion pricing works by defining various service classes

(with diverse QoS guarantees) and then charging an amount for each service based on the

current state of the network. In this research we will assume that QoS can be delivered by

dividing up effective bandwidth [KG99] to customers in the amount they desire and

charging them some fee for its exclusive use, similar to the work done by [PT99].

Congestion pricing is a specialized form of dynamic pricing where the price is set

by the amount of congestion on a system. In more general terms dynamic pricing is

simply a technique where prices change at certain times, for various reasons. In our

society that reason is mainly because more revenue can be made by changing to a

different price for an item, often based upon the elasticity of demand - though the case

does exist, in vehicular traffic, where the objective is simply the reduction of congestion.

While people enjoy the benefits of this technique - when prices are down - they are

usually rather unhappy when prices rise. Dynamic pricing is used extensively in some

industries - such as airlines (yield management), automobiles (prices generally changed

through rebates and dealer incentives), and in the hotel industry. Another familiar

example of dynamic pricing is the long distance telephony industry. This industry has for

years varied price by time of day in an effort to increase revenues. In general, these

dynamic prices are set based upon the demand for the product. When demand exceeds

supply prices can be raised - and revenues increased. This price change, of course,

affects the demand. We believe that the long distance pricing methods also had the effect

of helping to control demand on the resources. It is precisely this aspect of dynamic

pricing we are interested in capitalizing upon. Interestingly, some long-distance

14

companies are currently introducing static prices. We believe this is caused by an

increase in available resources allowing an increased revenue to be generated because it

is similar to a situation of unlimited resources. We will discuss the unlimited resource

situation a little later when we cover the results from [PT99].

Pepsi-Cola was recently assailed in the media for working on what was claimed to

be technology that would allow vending machines to adjust prices for soda based upon

the ambient air temperature - so a cold soda would cost more in hot weather, when

people are thirstier. In response Pepsi-Cola announced that it was working on technology

that would allow it to reduce the cost of soda at certain times in an attempt to increase

sales, and that technology was being developed to allow the company to monitor the

status of its machines on-line (status as being the amount of inventory on hand). This

reply seemed to appease the media, but it brings to light the very volatile attitudes

towards congestion or demand-dependent pricing. It seems that it is acceptable to reduce

prices at times of low demand (which also increases revenues), however it is

unacceptable to raise prices when demand is high. So companies can simply mark up

their products and then 'discount' them at an appropriate amount - no one raises a stir

when a rebate ends, especially if the rebate is only adjusted to a slightly lower amount. It

is our contention that there is actually no difference in the methodology, and that it is still

demand pricing, but we understand that there is a psychological effect on customers.

2.4 Markov Decision Processes and Dynamic Programming

Our model will take the form of an imperfectly observed, continuous time, infinite

horizon, average reward dynamic programming problem. This type of problem is

complicated not only because is it an infinite horizon formulation, but also we must deal

15

with imperfect information about the demand for network services. In this section we will

develop formulations of this problem starting from a simpler model and increasing in

complexity till we reach the model we will use.

2.4.1 Discrete-time, Finite-horizon Dynamic Programming Models and MDPs

Markov Decision Problems are problems that attempt to optimize a system by

applying controls at appropriate times. The control can be applied at the beginning of a

stage. A stage is a period of time where the system is in some system state, which can be

represented by state variables. The Markov Assumption states that a system can be

completely defined by the state variable in the stage that it is in, with no knowledge of

past states. We can then apply a control (change some parameter of the system which is

under our control) and the current state variables along, with that control, can completely

predict the value of the state variables at the end of the next stage. This is precisely why it

is a Decision model - we wish to make an optimal decision to control the system.

Dynamic programming as discussed is one of the main techniques used in solving this

system to find the optimal controls.

Dynamic programming problems are optimization problems where the objective

function is the expected value of the sum of rewards accrued at each stage of a sequential

decision process. They are solved in general by first computing the optimal reward-to-go

from the point in time one stage away from termination. Next, the optimal reward-to-go

from two stages to go is computed, and so on, until the optimal reward to go from the

current time period is obtained. Along the way the actions that are optimal for state/stage

pair are stored to yield the optimal policy for maximizing expected revenue.

16

Many problems have a fixed number of stages (N) with a terminal cost (revenue)

at the end of the last stage. If the revenue at each stage can be described by the following

function:

g(x,u,w)

where x summarizes the state of the system at a time k stages remaining, u is a control

applied at this stage, and w is a random parameter, then the optimization model yields the

following recursion:

Jk+1 (x) = max E{g(x, u, w) + Jk (f(x, u, w))} k = 0,1,..., N
ueU(x) w

and the optimal revenue jN (x)can be generated after N iterations.

Most problems of this type are solvable in closed form, as long as the number of

possible states at each stage is not too large. This type of formulation is used to solve

problems such as inventory control or machine replacement. The size of 'too large to

solve' in this case is generally a very small number because the difficulty of the problem

grows exponentially with each stage. Thus a one-stage problem with 10 states has only

l10, or 10, calculations. The same problem with 2 stages has 102, or 100 calculations.

Now if we expand that to a 10-stage problem with 10 states we must consider 1010, or 10

billion calculations. The problem we are considering in this thesis will later be shown to

have an uncountably infinite number of states. Also, the formulation has an infinite

horizon (number of stages). The reason for this is that we do not want to simply generate

a pricing solution for the next week, or next month, or year - we want a solution we can

use indefinitely. While it may not be correct to assume that this problem will exist with

it's current parameters forever, we seek a solution that will allow us to generate near

17

optimal gains for the foreseeable future, and so the infinite horizon aspect of the model

seems appropriate.

2.4.2 Discrete-time, Infinite-horizon Models with an Average-Reward Criterion

Thus far we have developed this formulation on the basis of discounting or

because of the existence of a reward free terminating stage which we would eventually

arrive at; in the actual formulation of this thesis neither of these is the case. In this

situation it is beneficial to optimize the average cost per stage.

For the infinite horizon, average cost model we want to maximize the limit at any

stage i shown here:

! /jV-1 \
lim-T7£\ I.g(xt,jUt(xk))\Xo = i)
*->»N Kk = o J

where |a.k(Xk) is an element from the control space. If the decision process is irreducible,

that is if all states communicate under all policies n = {no,it\,...},then the optimal average

reward from each state is independent of i. This is because the above limit considers all

possible states, and as the number of stages approaches infinity any effect that the initial

state could have had on the system is averaged to be of no more significance than any

other state which the system passes through along the way. Stated more succinctly, the

contribution to the total reward from the early stages becomes insignificant as N

approaches infinity, or

K 1 _/ £ , / w\ n for any fixed K lim-£\ SgU,//*(x*))/ = 0.
N-x» TV k = 0

The following proposition is taken from [B95]:

18

Under these assumptions the following hold for the average cost per stage problem:

(a) The optimal average reward X is the same for all initial states and together with

some vector h* = [h*(l),...,h*(n)} satisfies Bellman's equation

A* +/**(0 = max |g(i» + EMw)A*0')J>i = 1v,n
ueU(i)*- j=\ J

Furthermore, if u(i) attains the maximum in the above equation for all i, the stationary

policy \x is optimal. In addition, out of all vectors h* satisfying this equstion, there is a

unique vector for which h*(n)=0.

(b) If a scalar X and a vector h = [h(l),...,h(n)} satisfy Bellman's equation, then X is the

average optimal revenue per stage for each initial state.

For a detailed proof of this proposition see [B95].

2.4.3 Continuous-Time, Average-Reward Decision Processes and Uniformization

Up until this time we have discussed processes where rewards are accrued only at

certain times - thus the discrete-time aspect. In some situations rewards can accrue at any

time in a continuous spectrum - for example at a random time an arrival to a queue could

occur, and that could be the catalyst for the generation of rewards. The problem this

thesis addresses is such a type, where arrivals to the system occur according to a Poisson

process, and upon arrival we receive a reward and then set the control which will control

the next stage.

19

This type of formulation is more difficult to develop because instead of summing

rewards as they occur at discrete intervals we must calculate integrals over the time

periods:

1

JV->a> N {']im-jfE\tek*Mk(xJ) }
In order to calculate this value it is possible to discretize this continuous function by

considering as the time interval the shortest possible transition time of the model. To be

able to do this we simply must be able to calculate the maximum transition rate to predict

with probability py the state of the system after applying control Uk(xk). Take, for

example, the following model, where the transitions rates are shown:

Figure 2.1 Markov Chain

If all transition rates are equal then the maximum rate is simply is simply T, shown

above, but if the rates are not equal and/or are dependent upon the state the system is in

the calculation becomes more complicated. In this case we must add a self transition to

the model, so that the transitions occur at the same rate from each state (but that transition

may be a transition to itself):

Figure 2.2 Markov Chain with self-transitions

20

To calculate the maximum transition rate we sum the maximum increasing rate

(increasing in terms of state variable) with the maximum decreasing rate. We can then

change the probabilities of transition by dividing the actual transition rate for a state

(increasing or decreasing) by this maximum rate:

P'u-OVv)* pu

At this point we can resume the process of solving the problem as if we were working

with a discrete-time problem. We can then formulate a Bellman's equation of the form:

ueU(i) j

2.5 Congestion Pricing of Network Services: The [PT99] Model

As was mentioned earlier, this thesis will primarily carry forward research

conducted by [PT99], who modeled a single network link which offers M different

broadband service classes. They assumed that the network has some amount of resource

(bandwidth) R, and that each active user of class i needs some amount ofthat resource, rj.

The vector of all required resources is r = (ri,...,rM). The value of rj is the effective

bandwidth [KG99] required by the 1th service class. Each class i will consume bandwidth

for an exponentially distributed service time with a rate of [i\. Upon arrival the user pays a

fee, Uj, set by the service provider. Let u = (UJ...UM). It is assumed that a known demand

function exists which relates the request arrival rate to the price of service for that class:

At - a, + bi ui

where aj and bj are known. It is also assumed that there exists a price, Uj!max, beyond

which the demand becomes equal to zero, and that the function is continuous and strictly

21

decreasing in the range of (0, uijmax). Note that u is set by the service provider and is

allowed to vary in response to the state of the network.

The vector of demand rates can be written as

with the arrival rate when all prices are equal to zero denoted by X0. Because of

monotonicity Äo > A(u) for all non-negative price vectors u. X0 represents the upper

bound for the maximum arrival rate, and ^i,max=^(umax)=0 represents the lower bound.

This model can be represented by the following figure:

Class i users , /""s\

Class 2 users

Class M users

*T—
-f_- ro

Figure 2.3 Broadband Network Model

The state of the system is by characterized the number of users of each class in the

system at a particular time. We define ni(t) as the number of class i users in the system at

time t, so that the system's state can be represented as

N(t) = (ni(t),...,nM(t))/

Because nj(t) is discontinuous at times of call arrivals, nj(t) is treated (as a convention) as

a right-continuous function oft.

An incoming call from service class i at time t is accepted if and only if available

resources are available to service that call, i.e. whenever N(f/r-r-ri>R. Otherwise, the call

is 'blocked', or not allowed service. We can enforce this rule by setting u; = Uj,max, and

this will result in no class i arrivals.

22

At this time we will formally define what we mean by a policy. A policy is a

mapping from N=(ni, ..., nM) to prices for class 1, ..., class M service. The prices are

represented as

Price for Class i = (TIi(N, t))

Note that this mapping is dependent upon both the system state, N, and the current time,

t. For a stationary policy the mapping does not depend explicitly upon time, thus

Price for Class i = (rii(N))

A Static Policy is a policy where for all states the control is a constant value:

ni(N) = n,(N)forallN,N

while in a dynamic policy

rii(N) * n,(N) for some N, N

For this model we defined the system state as N(t)={ni(t)....nM(t)}, and the policy can be

defined as n(N(t)) = (7ii(N(t)„..., 7im(N(t)/. The price vector is U= On(N(t)„...,

TCm(N(t)/, and the arrival rate as a function of state can be written as A,(n(N(t)))= (

Xi(7t(N(t))),..., ^m(7c(N(t))))', which is equivalent to (Xi(ui) ,..., Xm(um) /.

This system evolves as a continuous time Markov Chain. Given the current time t

and price u(t), and a small change in that time, 5, it is possible to estimate the probability

of a class i arrival in the next 8 time units as A,i(Uj(t))8 = Xi(7ij(N(t)))8 . The expected

class i revenue generated from this time 8 would be approximately equal to

23

5uj(t)A,j(ui(t)) = ö(7ti(N(t)))A,i(7Ti(N(t))). As 8 decreases these estimates becomes more

accurate. The long-term average reward can therefore be written as

Jn = Um^E[JÄ(n(N(t))yU(N(t)dt]
u

The objective of [PT99] was then to identify the pricing vector u as a function of the state

of the network that maximizes the value of the above quantity.

Note that all states in the formulation of this problem communicate, and that the

demand functions X\(\x\) are continuous. Because of this the transition rates as well as the

reward rate are continuous in the decision variables. Both the reward rate and the

expected holding rate at each state N is a bounded function of u, as is the total transition

rate out of any state

M

u = IU(U+ //,[#/r,]).

This value of v is the greatest possible number of transitions per time period, an utilizing

it we can unioformize this Markov chain, as discussed earlier. We can thenm formulate a

Bellman's equation:

J*+h(N) = max [IA,(II,)K,+ X ^^-h(N +e,) +
ueu L itC (N) iiC(N) V

T!ll£lh(N -e,)+(l- I *'<"')- ^lUJLL)h(N)']
i = l V itC(N) V i = l V

for all N

24

where ei = (0,...,0,1,0,...,0) ?

C(N) = {i\(N + ei)'ri>R}

is the set of classes whose calls cannot be admitted in state N. Following is a breakdown

of the elements of this equation:

J*+h(N) = max\

Optimal
Average
Revenue

Relative
Revenue at
State N

Instantaneous
Revenue Rate

ieC(N)

itC(N) U

+ JJ-^-h{N-ei)
i=\ ü

+(1_ z m^>m)h(N)]
ieC(N) V t=\ V

Pr (user i arrival) *
(Relative Revenue at
State N+eO

Pr (user i departure) *
(Relative Revenue at
State N-eO

Pr (remaining in this state)
* (Relative Revenue at
this State)

Note that we actually have a system of equations since the equation for h(N) depends

upon h(N+ej). By imposing the condition that h(0)=0, this Bellman's equation has a

unique solution. This is due to the fact that for any two states, Ni and N2, there exists a

stationary policy that makes N2 reachable from Ni, i.e. the fact that all states

communicate. Once this equation is solved an optimal price vector can be obtained by

choosing the price vector u at each state N that maximizes the right hand side of the

equation. The solution to this equation can be obtained by utilizing classical dynamic

programming algorithms, however complexity increases with the size of the state space.

25

Because of this an exact solution is only feasible when the number of classes is small.

We will explain in more detail the algorithm used to solve this system of equations in

section 4.2.

[PT99] obtained the following theoretical results about their model:

• In the case of unlimited capacity (R=oo) the optimal price vector is a
constant (uinf). (Thus in this situation the optimal dynamic pricing policy
is a static pricing policy).

• In a single class system the optimal price is an increasing function of the
number of users already admitted in the system.

• For the asymptotic case of many small users, near-optimality results from
static prices within the class of dynamic pricing policies.

In this last result, we define small by examining the system as the percentage of

the total bandwidth absorbed by any one user approaches zero. In other words, we

examine the average revenue in the following situation, as y -> oo :

A,i>y=yA,i(u)
jj,i constant
T\ constant

For us the most interesting aspect of this earlier work by Pachalidis and Tsistiklis is the

analysis of this small users asymptote, which seems to indicate that dynamic pricing may

not play much of a role in broadband networks with high levels of aggregation. The main

objective of this thesis is to determine whether a similar result holds when we relax the

assumption of a known, time-invariant demand.

Unfortunately for us, real life problems are often much more complex than this.

In our case we will not be able to obtain complete observations of the state variables,

therefore we will have to deal with partial observations. This partial observation is due to

a stochastic process which does not provide completely accurate feedback -just a request

for service at certain time intervals. In more generic terms this type of problem provides

26

some type of imperfect state information which can be used to attempt to optimize the

problem, though the solution is generally more intensive computationally. Because of this

these type of problems are often solved sub-optimally.

One of the main techniques used to solve POMDPs sub-optimally is called Open

Loop Feedback Control [B95]. In this technique a decision is made about the partially

observed system on the basis that the most recent observation will be the last observation

received. When another observation is subsequently received it is then considered and

another decision is made. We will later use this method in the development of our

heuristic.

27

Chapter 3. Problem Formulation: The Case of Partially Observed

Demand

The pricing model analyzed in [PT99] is highly structured and may be interpreted

as a priced multiclass loss model. While this model structure admits a very clean

analysis, leading ultimately to a proof of the near-optimality of optimal static pricing, this

comes at the expense of several rather strong simplifying assumptions. As is usually the

case in multiclass loss models, it is assumed that requests for various types of service

arrive according to a price-dependent Poisson process. The instantaneous rate of request

arrivals for each service class i is a known function Ai(uj) of the price w, set for that

service. The functions /I, parameterize the problem formulation, and the ISP is allowed to

exploit this knowledge in optimizing its revenue. Inherent in this is the assumption that

after changing the price w, for a service class the effect of the change is instantaneous, i.e.

that the new price is communicated instantaneously to the pool of potential network

users. Both of these assumptions, (1) known, time-invariant demand and (2)

instantaneous communication of service prices, are somewhat unrealistic in the context of

broadband services. In this thesis, we intend to relax the former. Our hypothesis is that in

modeling demand as an unknown, stochastically varying quantity the difference between

optimal dynamic and optimal static pricing is significant even in the asymptotic case of

many small users.

In the generalized model we are about to present, we model demand as a

stochastic process which is observed only through the arrival of requests at varying rates.

28

The service provider must estimate demand from the number of requests for service as a

function of price, and then utilize that observation to control the system (by setting

prices) and influence its behavior towards a more profitable state. From this interarrival

time observation we will compute the posterior probability distribution that the service

class is in a particular demand state. From this probability distribution and from the other

state variables (numbers of current users per service class), we set the price for services

which will drive the system toward increased revenue. In Section 3.1 below, we present

the new partially observed, stochastically varying demand model. In Section 3.2, we use

this model in formulating the problem as a partially observed Markov decision process.

In Section 3.3, we illustrate the state-space complexity of the new formulation.

3.1 A Model for Partially Observed, Stochastically Varying Demand

As a first cut at modeling unknown demand, we have chosen to represent our

uncertainty as a hidden Markov chain. We assume that at any point in time the

instantaneous rate of arrivals within a service class / can be represented as a linear

function of the service price «,. The parameters of this line are determined by the state of

the hidden Markov chain. This is a generic model for demand for which we have yet to

develop practical statistical tools for parameter estimation. For the computational

experiments which appear later in this thesis, we set the model parameters arbitrarily.

3.1.1 The Hidden Markov Chain

In our model, the rate of arrivals is determined by the state of a hidden Markov

chain. The state of the Markov chain selects the linear function that relates price to the

29

instantaneous rate of arrivals. For our computational study, we assume that the Markov

chain is a three-state birth-death process in such a way that

1. each state of the Markov chain can be interpreted roughly as a demand

level, e.g. "low," "medium," and "high, and

2. the demand state for a service class cannot jump all the way from

"low" demand to "high" demand and vice versa, without passing

through "medium" along the way.

The model for service class i is illustrated in the figure below.

i r7j^rrv^3
Pil ßi2

Figure 3.1 Demand-State Modeling

States 1, 2, and 3 in the figure correspond roughly to "low," "medium," and "high," as

discussed in the following subsection. The labels on the arcs in the figure are defined as

follows:

1. ay is the average rate of transitions of class i from demand state j to demand state

j+l-

2. ßij is the average rate of transitions of class i from demand state j+l to demand

state j.

A similar model structure is used for each service class / = 1, ..., M.

We point out again that the demand state for each service class is not directly

observed by the service provider. Information about the demand state of a given service

class comes only by recording a history of arrivals and reconciling the average rate of

arrivals with the prevailing set of prices for service.

30

3.1.2 The Rate-Price Relationship for a Given Demand State

As mentioned above, we assume that if the demand state of a service class is

constant, then the instantaneous rate of request arrivals depends linearly on the price. We

refer to the rate-price relationship for a given service class /' and demand state c as a

demand function, ACj(iij), and each such function reflects the fact that as the price ut

increases the instantaneous rate of arrivals decreases. Thus, each demand function is of

the form ACi(uj) = a°i + bc
t uh where ac, and b°i < 0 are parameters associated with service

class / and demand state c. For the computational study which appears later in this thesis,

we will assume that the demand functions for a given service class do not cross, as shown

in the figure below.

A,

Figure 3.2 Demand -State Illustration

3.2 Pricing as a Partially Observed Markov Decision Process.

The pricing model considered in [PT99], with known and time-invariant demand

functions, reduces to a continuous time Markov decision process. In our case, since the

demand function for a given service class is selected according to the state of a hidden

31

Markov chain, the pricing model becomes a partially observed Markov decision process

(POMDP).

If the demand states for each service class were observable, then the state of the

decision process would be N(t) = { [m(t), dj(t)J,, [nM(t), dM(t)J }, where nt(t) is the

number of active class i sessions at time /, and dt(t) is the demand state for user class /'.

N(t) is all that would be needed to determine the probability distributions that describe (1)

the time to the next event and (2) whether the next event corresponded to a request

arrival, user departure, or a demand state change. With perfect information about the

demand, the decision process in this case would be very similar to the model discussed in

[PT99], a continuous-time MDP.

Unfortunately, the "demand state" that characterizes the demand for a type of

service from a large pool of users is an abstract concept that lacks a real physical

interpretation and cannot be directly observed. The best we can do is to maintain, as a

sufficient statistic, the probability distribution p, for the demand state of each user class i.

Thus, the state of the partially observed decision process is S(t) = { fnj(t), pi(t)J, ...,

[riM(t), PA/OJ }. In principle, we want to identify a stationary policy II(S) = [%\(S), ...,

TIM(S)]' that maximizes long-term average revenue for the service provider

hm^E^A[u(s(t)),D(t)iu{s(t)) dt\

where n\{S) is the price that the policy II dictates for service class i when the system is in

state S, D = {dh ..., dM} is the profile of hidden demand states, A[IJS), D] = [

Xdli(ni(S)), ..., A.dMM(7iM0S))]' is tne vector of request arrival rates associated with the

policy EL and demand state D.

32

For the computational study that appears later in this thesis, we focus on problems

with two service classes where the demand for each service class is characterized by a

three-state hidden Markov chain. In this case, the state of the POMDP can be expressed

as S(t) = { ni(t), p\(t), p2i(t), p3i(t); n2(t), p^t), p2
2(t), p3

2(t) }, where p°i(t) is the

probability at time t that service class / is in demand state c.

At this point, we note that our formulation of the pricing problem as a POMDP

leads to a huge increase in the complexity of computing solutions. Now that the state S of

the process involves the posterior distribution p, for each service class i, the state space of

the decision process is uncountably infinite. (This is because the space of all probability

distributions is a continuum.) The state space complexity of our formulation causes

significant difficulty in computing optimal pricing solutions. We explore these issues in

the next subsection.

3.3 State Space Illustration / Complexity Issues

Let us first examine the number of states in the [PT99] formulation in order to

have a comparison. Again, we are considering this model in accordance with the

assumption that the amount of bandwidth required for an application can be estimated by

its effective bandwidth. In this manner it is possible to make admission decisions on the

basis of the total number of users in the system. As an illustration, we will examine a

simple model of the system:

M = 2 (number of service classes)

R = 10 (amount of resource)

n = 3 (amount of resource required by service class # 1 (i.e. effective bandwidth))

r2 = 1 (amount of resource required by service class # 2 (i.e. effective bandwidth))

33

[PT99] represented the state of their system with the following notation:

N = (n1(t),....nM(t))

and so this system would be represented as N = (ni(t), n2(t)). The state space is as shown

below:

N,(t)

10-
9 -
8 "
7 _

6 _

5 _

4 "
3 "
2
1
0 r^n

12 3 4

FIGURE 3-3 State Space Illustration

N,(t)

Note the discrete nature of the state space. The number of points in this state space is a

function of the total available bandwidth and the requirements of each service class. For

the simple example above the state space is defined by the constraint: n^ + n2r2 < R,

i.e. 3 nj + 1 n2 < 10, which yields a state space of 26 points.

By expanding the model as we have to include demand states, we must not only

consider the number of users in the system in each service class at time but also the actual

values of the demand states for each service class. If this were a perfectly observed

system, the state could be represented by N(t) = fnrft), di(t), n2(t), d2(t)]'. So, the number

of states for this example grows by a factor of CM = 9, where C is the number of possible

demand states per service class(equal to 3 in this case). All totaled, we would have 26 *

9 = 234 possible system states, as opposed to 26 for the [PT99] model.

For the POMDP formulation with the state represented as

12 3
S(t) = {ni(t), pli, p2i, p3i; nM(t), P M , P M , P M)'

34

we have a similar number of values for the number of users in the system at time t, but

the demand state parameters are now continuous, therefore we have an infinitely

uncountable state space. One of the techniques often used when working with POMDPs

is to discretize this state space in order to reduce the amount of states it is necessary to

contend with. If we were to approximate the probability distribution of a service class

being in a demand state to the nearest 10% we can estimate the number of states in the

state space of this simple model as follows:

possible states = 26 * 103 * 1()3 = 26,000,000 states

While this is much simpler to work with then an infinitely uncountable number of states,

it is still impossible to solve in closed form and exact numerical calculations are

impractical for today's computers [B95], therefore we have developed a heuristic to solve

the problem for a suboptimal solution.

35

Chapter 4. A Heuristic for the POMDP

In the preceding chapter we formulated the problem of revenue maximization for

the service provider as a partially observed Markov decision process in continuous time.

Since the state space of the formulation is uncountably infinite, there is very little hope

for computing exact solutions for an infinite horizon (average cost) objective function.

We postpone the exact characterization of optimality for this class of problems as future

research. Our approach here is to develop an heuristic solution to the problem and then

compare the value of this heuristic to the optimal static price which can be closely

approximated through numerical calculations.

In Section 4.1 below we define the heuristic which we test later in Chapter 7. The

heuristic involves consideration of all possible demand state profiles D = (dl, ..., dM),

and then computing optimal stationary policies for each known, time-invariant demand

case. At run time we continually compute the posterior probability distribution for the

demand state associated with each user class, and then select the action specified by the

optimal policy for the most likely demand state profile. In Section 4.2, we outline our

methodology for computing solutions for the each known, time-invariant demand

function profile. The same numerical technique could have been used by Paschalidis and

Tsitsiklis in [PT99] in their computational examples. In Section 4.3, we outline our

methodology for the on-line computation of the posterior probability distribution for the

demand state of each user class. This is an integral part of the demand state estimate used

in the heuristic.

36

4.1 Formal Definition of the Heuristic

The Heuristic we have developed to obtain improvement is as follows:

1. Identify the parameters of the demand model

2. Solve the associated MDP's (one MDP for each demand state pair)

3. Run time operation:

a) Obtain demand state estimate (select the most likely demand state
pair)

b) Set price

b) Monitor system for Arrival/Departure and revise demand state
estimate

4. Repeat step 3.

• Periodically restart to accommodate changes to the model parameters

4.2 Solutions to MDP's

The procedure we have used to solve the MDP's is a standard dynamic

programming algorithm, known as relative value iteration [B95], designed to compute a

solution to the Bellman's equation from Section 2.5. We implemented relative value

iteration in the C programming language , and the following pseudocode highlights the

main elements of the routine.

while convergence has not occurred

{
• set largestConvergence = 0
• for each possible state (ni,n2)

• for every possible price for class 1 (ui)@

• for every possible price for class 2 (U2)^
{
• solve®

37

htemp= 2>(w,>,+ I -^-h(N + ei)
HC(N) itC(N) V

,=1 L> /eC(Af) t> (=1 V

• save as hbest the highest value in this iteration
• save as Uopt(l) and UoPt(2) the prices which achieved the optimum for

ni and n2
• if ni = 0 and n2 = 0, then set hbesto = htemp
} /* end for u2 */

} /* end for ui */
• set h(ni, n2) = hbest - hbesto

• set convergence = | h(ni,n2)iast iteration - h(m ,n2) |
• if convergence > largestConvergence, then set largestConvergence = convergence
• } /* end for each possible state */

• if largestConvergence < 10"6 then we have converged

}

Several comments are in order regarding this algorithm. First, the superscript @ denotes

locations where boundary conditions must be checked. If the system cannot accept more

arrivals ofthat corresponding class than the price must be set to the maximum to ensure

an arrival rate equal to zero. Next, the set of prices (uopt(l) and Uopt(2)) that prevails when

the system converges is the optimal policy. The final value of h(ni,n2) indicates the total

amount of money we would lose (not receive as revenue) if we started the process in state

(m,n2) instead of state (m=0,n2=0). The final value of hbesto is the optimal average

revenue per stage. This final variable, hbesto, is the value that we can compare to the

average revenue from an optimal static pricing policy to determine which policy

performed better. A comparison of these prices will be shown in the analysis after we

develop the procedure to find optimal static prices. Remember the results from [PT99],

however - optimal static pricing is nearly as good as optimal dynamic pricing in these

situations (when the demand function is known with certainty).

38

4.3 Demand State Estimation

The heuristic of Section 4.1 relies upon the ability to compute the most likely

demand state for each service class. In the state estimation procedure described here we

use the information available (interarrival/departure times per class) to calculate the

posterior probability that the arrival (or lack of arrivals), together with the price, occurred

as a result of a specific demand function. Specifically, Bayes' rule is used to update the

probability distribution for the demand state of service class / whenever a class i request

arrives or whenever a class / customer departs. We now derive the update equations.

Derivation of the Update Rule Following a Request Arrival:

Let t indicate the time of the most recent arrival in class i,
T indicate the interarrival time of the most recent arrival in class i,
t - T be the time of the next most recent arrival,
dsl indicate the demand state for class 1,
ds2 indicate the demand state for class 2,
H indicate the past history of past arrival times and prices used up to including

the t-T arrival
P(ds=i) = the probability that the demand state of the arriving class is in state i at

time t-T,
P(ds-i) = the probability that the demand state of the arriving class is in state i at

time t,
Uj = the price of service for class i at time t-T.

We wish to compute P(ds'=i), i=(l,2,3). Note that

39

P(ds'= i | H,r) =

Probability density for the

interarrival time T given

demand state k and the price u

P(ds'=i,T\U)

P(T\U)

I P(ds'=i, T | H, ds = k)P(ds = k\U)

= P(r\H)

I P(ds'=i,r\ds = k, u)P(ds = k\U)

= P(T\K)

I P(ds'=i\ds = k, r, u)P(r \ds = k, u)P(ds = k\U)

P(r\U)

and let gk, ,(r) = P(ds'=i\ds = k,r,u)'

— fk, u(r) = P(j | ds = k, u)

where

Probability of demand

state transitioning to

state k during time x

(which is actually

independent of u)

To find a value of gki(x) we will make the assumption that this value can be

approximated by the probability of transition from state k to i multiplied by the time

period, T. This assumption will be valid as long as x is much greater than the inverse of

the transition rate. In this way we will only be considering the probability of one

transition directly from state k to state i. These approximations are as follows:

gO,o(r) = 1 - a[class],0 * T

gO,l(r) S a[class],0 • X

go,2(r) = 0

gl,o(r) = ß[class],l • T

gl,l(r) = 1 - CC[class],\ *T~ ß[class],l * T

gl,2(r) = aiclass],l * T

g2.o(r) = 0

g2,l(r) = ß[class],2 * T

g2,2(r) = \- ßlclass],2 * T

Finally, we choose / as the most likely demand state if

40

P(c = i\x)>P(c = j\x)
for all i * j and Break Ties Arbitrarily (BTA)

Derivation of the Update Rule Following a Departure:

In order to calculate this probability we use the Poisson mass function instead of the

exponential density function. Only the changes to the above formulation are shown:

• T indicates the time period since the last arrival if a class i user,
• P(ds=i) = the probability that the demand state of the departing class is

in state i at time t-T.
• P(ds'=i) = the probability that the demand state of the departing class

is in state i at time t.

-TÄ n O

We choose i as the most likely demand state if

P(c = /1 JC) > P(c = j\x)
for all /' * j and Break Ties Arbitrarily (BTA)

Factoring Revenue into State Estimation:

In order to further increase our revenue we may include cost ratios in our

calculations. This will influence the system's perceptions towards the demand states

which produce a higher average revenue. To do this the only modification required is to

choose / as the most likely demand state if

41

P(C = l | X)Jds\, dsl, i* > P(C = j\x) Jdsl, dsl, j *

for all/*; (BTA)

where Jdsl,ds2,I* is the optimal average revenue given the currently perceived state in

the non-arriving/departing class and ds=I in the arriving/departing class.

42

Chapter 5. On Computing Optimal Static Prices

The preceding chapter described a heuristic solution for the POMDP model for

the case of partially observed, stochastically varying demand. We measure the value of

this heuristic by comparing the revenue it achieves to the revenue associated with optimal

static prices. If the heuristic is significantly better, then we have established a nontrivial

gap between optimal dynamic and optimal static pricing for the case of uncertain,

stochastically varying demand.

In Section 5.1 below, we outline our methodology for computing optimal static

prices for the case of known, time-invariant demand. The same numerical technique

could have been used by Paschalidis and Tsitsiklis in [PT99] in their computational

examples. In Section 5.2, we outline the extensions to this methodology required to

compute optimal static prices for the case of partially observed, stochastically varying

demand.

5.1 Optimal Static Prices for the Case of Known, Time-Invariant

Demand

Optimal static Prices for the MDPs can be computed in much the same way as the

optimal dynamic policies. We simply need to change the order of the 'for' loops to check

each price pair, and then keep track of the optimal policy. The adapted algorithm is as

follows:

for every possible price for class 1 (ui)
{

for every possible price for class 2 (U2)
{

while convergence has not occurred
{

43

for each possible state (ni, 112) ®
{

solve

htemp= £A(u*)u/ + I ——h(N + ei)

,=l U <eC(AO U 1=1 V

save as hbest the highest value in this iteration
save as UoPt(l) and Uopt(2) the prices which achieved that

optimum
if ni = 0 and n2 = 0, then set hbesto = htemp

} /* end for each possible state */
set h(nl,n2) = hbest- hbesto
set convergence = Absolute Value (h(nl,n2)iast iteration - h(nl,n2))
if largest convergence < 10" then we have converged for this price set
if hbest > htotai best then htota! best = hbest and uoptl= Uopt(l) and uopt2=

UoPt(2)
} /* end for U2 */

} /* end for ui */

® indicates a location where boundary conditions must be checked to ensure negative arrival times
do not occur

The results of this algorithm are similar to before, with htotai best being the optimal revenue

and uoptl and uopt2 being the optimal static price policy.

5.2 POMDP Reformulation

Optimal static prices for the case of partially observed, stochastically varying

demand are somewhat more complicated to compute, but the computations are at least

tractable. Even though the demand states for the system are unobserved, we are able to

evaluate the effect of static prices simply by evaluating the average reward for the

associated finite state Markov chain. (Prices do not change in response to state

transitions, so neither does demand.) To construct the algorithm we must first re-examine

several of the equations we used earlier Sections 2.5 and/5.1, specifically (1) the

calculation of v, the maximum transition rate, and (2) the form of Bellman's equation.

44

Maximum Transition Rate:

In order to calculate the maximum transition rate we must include terms which contain

the fastest possible transition rate between demand states.

Mr R _ —-1
v = EI A*, i: + M-) + ai + ßl

_ 2

where as = max(e&, j)

_ 2
and ß = max(/X, /)

y=o

Bellman's equation:

Likewise, the Bellman equation must be modified to include the transitions between

demand states:

J * +h(ds\, ds2, m, m) =

maxl Ai(dsi,m)u\ + A\(ds2,ii2)u2
ueU U

Ai(dsi,w). . . , , . Ai(dsi,ui) .
+ —-——- h(ds\, ds2, m +1, ni) + — h(dsi, ds2, n\d, m +1)

v Ü

+ -±- h(ds\, ds2, n\ -1, ni) + -^— h(ds\, ds2, n\,ri2-V)
v v

CC\ 1 CC2 1
+ —- h(ds\ +1, ds2, m, m) + —- h(dsi, ds2 +1, m, ni)

v ü

+ =— h(ds\ -1, ds2, n\, ni) + —- h(dsi, ds2 -1, m, ni)
V v

l\(ds\,u\) A,2{ds2,ui) mjUi mjut 0 v ü ü v
Ct\,\ CC2,\ ß\,\ ß2,\

) * h(ds\, ds2, n\, ni)\
V U V V

From this we can rewrite our earlier algorithm and now solve the POMDP for optimal

static prices:

for every possible price for class 1 (ui)
{
for every possible price for class 2 (U2)

45

while convergence has not occurred

{
for each possible demand state for class one (dsi)

{
for each possible demand state for class two (ds2)

{ _
for each possible state (ni, n2)u

{
solve

htemp = maxl X\(ds\,u\)u\ + Xi(ds2,U2)u2

+ —i——Lh(,dsi,ds2,m + \,m) + ———Lh(ds\,dsi,m<i,n2 + \)
u v

+—h(dsi, ds2, m-l,m) +—h(ds\, ds2, m,m-1)
u u

+ —- h(ds\ +1, ds2, n\, m) + —'- h{ds\, ds2 +1, «I, m)
U V

+ —h(dsi-l,ds2,n\,ri2) + f-^-h(dsi,ds2-l,ni,m)
v u

0 Zi(ds\,u\) A,2(ds2,U2) _ mß _ rv/A

v v v t>
ai.i cc2,i ß\,\ ß2,\\1.,., , .."I
 : — !-—) * h(dsi, ds2, m, 112) J

v v o o

and save as hbest the highest value in this iteration
and save as UoPt(l) and UoPt(2) the prices
which achieved that optimum

and if ni = va = dsi = ds2 = 0 set
hbestO = htemp

} /* end for each possible state (ni, n2) */
} /* end for each demand state (ds2) */
} /* end for each demand state (ds2) */

set h(nl ,n2) = hbesr hbesto
set convergence = Absolute Value (h(nl,n2)iastiteration - h(nl,n2))
if largest convergence < 10"6 then we have converged
if hbest > htotai best then htotai best = hbestand uoptl= Uopt(l) and uopt2=

UoPt(2)

} /* end for U2 */
} /* end for ui */

® indicates a location where boundary conditions must be checked to ensure negative
arrival times do not occur

The results of this algorithm are similar to before, with htotai best being the optimal

revenue and uoptl and uopt2 being the optimal static price policy.

46

Chapter 6. Examples, Part 1

In this chapter we present the results from three computational examples. We

focus on results for the case of perfectly observed, time-invariant demand. Our goal is to

illustrate the observation that there is very little gain from optimal dynamic pricing

compared to optimal static pricing, at least when the demand functions are known and

time-invariant.

6.1 Example I

To test our code and to verify our understanding of the problem, we have computed

optimal dynamic and stationary policies for some of the test data described in [PT99].

6.1.1 Problem Data

This application has two classes, each of which has parameters as discussed

earlier. Class one demand models are denoted as the number 1 followed by A, B, or C,

and class two demand models by the number 2 followed by E, F, or G. A complete

model denotes the demand of both classes, such that '1A2E ' would indicate class one is

in demand state A while class two is in demand state E.

Parameters for the first example are drawn from an expansion of the parameters

from [PT99]. These parameters are based on the working of an ATM network, and rates

are in terms of arrivals/departures per hour:

47

Model R a1 b1 a2 b2

1A2E 155 40 4 350 35
1A2F 155 40 4 425 42.5
1A2G 155 40 4 500 50
1B2E 155 60 6 350 35
1B2F 155 60 6 425 42.5
1B2G 155 60 6 500 50
1C2E 155 80 5 350 35
1C2F 155 80 5 425 42.5
1C2G 155 80 8 500 50

10 40 4 350 35
155 40 4 350 35
155 70 4 550 35

For all cases R=155 Mbps, ri=4 Mbps, r2=l Mbps,
and Hi=l / hr, and u2=21 hr.

Table 6-1 Example I: Model Parameters

6.1.2 Results from the DP Calculations

The following results were obtained from our calculations. This first set compares

calculations made by [PT99] to calculations made in our research.

P & T calculations Dynamic vs P&T

Model R a1 b1 a2 b2 J* (P&T) Js(PST) % improv J* Js % improv Difference % Diff

1A2E 155 40 4 350 35 952.63 945.79 0.72% 950.10 942.86 0.77% 2.53 0.27%

1A2F 155 40 4 425 42.5 1116.66 1105.50 1.01%

1A2G 155 40 4 500 50 1281.65 1270.40 0.89% 1275.54 1258.71 1.34% 6.11 0.48%

1B2E 155 60 6 350 35 964.41 954.17 1.07%

1B2F 155 60 6 425 42.5 1124.50 1108.03 1.49%

1B2G 155 60 6 500 50 1279.02 1251.66 2.19%

1C2E 155 80 5 350 35 977.28 965.33 1.24% 972.93 954.35 1.95% 4.35 0.45%

1C2F 155 80 5 425 42.5 1129.36 1112.95 1.47%

1C2G 155 80 8 500 50 1288.97 1273.90 1.18% 1281.24 1258.86 1.78% 7.73 0.60%

10 40 4 350 35 164.63 163.73 0.55% 164.45 163.45 0.61% 0.18 0.11%

155 40 4 350 35 952.63 945.79 0.72% 950.10 942.86 0.77% 2.53 0.27%

155 70 4 550 35 2189.20 2164.40 1.15% 2184.57 2159.44 1.16% 4.63 0.21%

For all cases R=155 Mbps, rx=A Mbps, r2=l Mbps, and Hi=l / hr, and \L2=2 I hr. For those models where
there are no values for [PT99] it is because those models are solely ours and are shown here because of
similarity to these models.

Table 6-2 Example I: MDP Optimal Dynamic and Static Pricing

Analysis of these results shows two items of interest:

1. Our calculations differ slightly. The difference can be explained by the price

increment used and possibly by selection of convergence criteria. We

incremented the prices at 1 dollar while [PT99] increment at 1 cent. The

smaller increment they used would result in higher revenue in both the

dynamic and static cases. The convergence criteria we employed was to

continue execution until convergence was less than 10" or for 20,000

48

iterations of the dynamic programming algorithm, whichever came sooner.

All of our results in these cases resulted from convergence of 10"6, while the

convergence criteria used by [PT99] is unknown, though assumed to be

similar. A larger convergence criteria would result in higher values of

revenue.

2. We can confirm the analysis that static prices are nearly optimal in the case of

many small users and a known demand function.

6.1.3 Verification of Results Through Simulation

To confirm these prices we ran the static and dynamic policies shown here through a

simulation (which will be discussed more fully in the next section). The comparison to

simulated revenues using these static and dynamic policies for selected models is as

follows:

Dynamic Policy Comparison Static Policy Comparison
Solution Simulation Standard Solution Simulation Standard

Model J* Mean Deviation Js Mean Deviation
1A2E 950.10 950.04 1.1836 942.86 942.87 1.8523
1B2F 1124.50 1124.69 1.3597 1108.03 1107.36 1.4995
1C2G 1281.24 1281.30 1.3024 1258.86 1258.51 1.6631
Each simulation was run for thirty replications.

Table 6-3 Example I: Simulation Validation

49

6.2 Example II

The second example is a single channel from a broadband hybrid fiber-coax

network running the DOCSIS protocol. The bandwidth available is 27 Mbps, and rates

are expressed as the number of transitions per second.

6.2.1. Problem Data

This application again has two classes, each of which has parameters as discussed

earlier. Parameters for this sample application are as follows:

Model a1 b1 a2 b2
1A2E 20 2 10 3
1A2F 20 2 8 3
1A2G 20 2 6 3
1B2E 15 2 10 3
1B2F 15 2 8 3
1B2G 15 2 6 3
1C2E 10 2 10 3
1C2F 10 2 8 3
1C2G 10 2 6 3

For all cases R=27 Mbps , r,=2 Mbps , r2=.5 Mbps,
H,= 000139 / second , and |a2=.000278 /second.

Table 6-4 Example II: Model Parameters

6.2.2 Results from the DP Calculations

The data which was shown in the heuristic development, section 4.1, was also

solved for both optimal dynamic and static policies. The results are as follows:

50

Model a1 b1 a2 b2 J* Js % improv
1A2E 20 2 10 3 0.05 0.05 0.00%
1A2F 20 2 8 3 0.04 0.04 0.03%
1A2G 20 2 6 3 0.03 0.03 0.73%
1B2E 15 2 10 3 0.05 0.05 0.00%
1B2F 15 2 8 3 0.04 0.04 0.35%
1B2G 15 2 6 3 0.03 0.03 0.57%
1C2E 10 2 10 3 0.05 0.05 0.00%
1C2F 10 2 8 3 0.04 0.04 0.35%
1C2G 10 2 6 3 0.03 0.03 0.87%

For all cases R=27 Mbps , ^=2 Mbps , r2=.5 Mbps,
|i!=.000139 / second, and n2=-000278 /second.

Table 6-5 Example II: MDP Optimal Dynamic and Static Pricing

In this case the optimal static performed as well as or nearly as well as the optimal

dynamic in all cases. Note that in theses models the service time was very long, as is

shown by the very small value of u,. As a result of this and the effective bandwidth

requirements compared to the total available, the number of users in the system at one

time was small - in fact the largest number of group one users possible was 13 and the

largest number of group two users possible was 54. The system tended to be monopolized

by group two users at all times for all models.

6.2.3 Verification of Results Through Simulation

The simulated validation of selected models was as follows:

Dynamic Policy Comparison Static Policy Comparison
Solution Simulation Standard Solution Simulation Standard

Model J* Mean Deviation Js Mean Deviation
1A2E 0.0487 0.0487 0.0001 0.0487 0.0487 0.0001
1B2F 0.0376 0.0375 0.0000 0.0375 0.0375 0.0000
1C2G 0.0265 0.0263 0.0003 0.0263 0.0263 0.0001

Table 6-6 Example II: Simulation Validation

51

6.3 Example III

The third and final example we list is very similar to Example II - however in this

case the service times were switched between user class one and two. Instead of having

the class which required more effective bandwidth (four times as much) taking longer for

service, they would now take less time.

6.3.1 Problem Data

This data is the same as that for example two:

Model a1 b1 a2 b2

1A2E 20 2 10 3

1A2F 20 2 8 3

1A2G 20 2 6 3

1B2E 15 2 10 3

1B2F 15 2 8 3

1B2G 15 2 6 3

1C2E 10 2 10 3
1C2F 10 2 8 3

1C2G 10 2 6 3

For all cases R=27 Mbps , ri=2 Mbps, r2=. 5 Mbps,
H!=.000278 /second, and (i2=000139/second.

Table 6-7 Example III: Model Parameters

6.3.2 Results from the DP Calculations

For all cases R=27 Mbps , ri=2 Mbps , r2=.5 Mbps,

R a1 b1 a2 b2 J* Js % improv

1A2E 20 2 10 3 0.02 0.02 0.00%
1A2F 20 2 8 3 0.02 0.02 0.00%
1A2G 20 2 6 3 0.02 0.02 2.53%
1B2E 15 2 10 3 0.02 0.02 0.00%
1B2F 15 2 8 3 0.02 0.02 0.00%

1B2G 15 2 6 3 0.01 0.01 3.40%
1C2E 10 2 10 3 0.02 0.02 0.00%
1C2F 10 2 8 3 0.02 0.02 0.00%
1C2G 10 2 6 3 0.01 0.01 0.00%

Hi=000278/second , and |a2=000139/second.

Table 6-8 Example III: MDP Optimal Dynamic and Static Pricing

52

The results are very similar to the last model - little to no improvement when

utilizing dynamic pricing. This is, however, the expectation from such models. We will

now go on and develop the simulation for our heuristic and show the gains possible when

we do not know with complete accuracy the current demand model.

53

Chapter 7. Examples, Part 2

In this chapter we will show the computational results and calculations of the

heuristic and how it compares to an optimal static pricing policy.

7.1 Comparison Methodology

We developed a simulation which was used to estimate the average revenue we

would obtain when utilizing this heuristic, which can be compared to the optimal static

prices which were generated for the same models. Specific details of the simulation

appear in Appendix A-4.

Random numbers were generated by a procedure which combined two linear

congruential generators and also included a shuffle of the values to ensure that serial

correlations are broken up. This generator was originally developed by L'Ecuyer and is

taken from [PTVF94] entitled 'ran2'. The period of this generator is approximately 2.3

* 1018 while the greatest number of random numbers used by any of the simulation runs

is approximately 1.5 * 109. The random numbers used all came from the same seed, and

in each run of the complete simulation the same values were assigned to the same

variables - thus in each simulation that was executed the arrival time, departure times,

and demand state transitions occurred at the same times (in other words, we used

common random numbers). This random variable generator was initialized only once at

the beginning of each simulation (it was not reset between replications).

The average run length for each replication in the simulation was two years. This

value was chosen because it is of a significant length of time to allow multiple transitions

through each of the demand states. In addition the first replication was discarded to

54

ensure initial bias did not influence the system (initial bias exists because we start the

system in an empty state (nl=n2=0) and the initial average revenue rate is much higher as

the system fills to capacity quickly. The following plot shows this relationship:

Average Revenue

1 fffi^Äi^i1-"'1

0.9-

0.8 lfffB^v*i
0.7

0.6-

0.5

0.4 -

11BI&"'

0.3 - |§1§|'.
0.2 -
01 -

-Average Revenue

i2^'— -*0>T-^-K.OCMtOOO'r-?)COC» 00 O CO

Figure 7.1 Initialization Bias

When the simulation began the x axis is at zero, and as it progresses the average value

converges to a steady state value. At the right end of the X axis on the chart the system is

in steady state and we can then begin to gather statistics which are not biased. The

method from this point on was to run the simulation for an additional two years, capture

the statistics of interest, and then reset them to gather statistics for the next replication.

31 total replications were ran of each model, of which the last 30 were used to

generate the sample mean and variance for the case being modeled. A hypothesis test was

then done as follows:

let JC = simulation sample mean
S = sample variance

X. = Optimal static pricing policy average revenue

55

Ho: X=X'

Hl: X>X'

The test statistic we will use is as follows:

X-X'
t0 = 7=~

SlJn
where our criteria for rejection is

tO>ta,n-\

We will use an a value of .05, enabling us to obtain a 95% confidence interval.

If we fail to reject Ho we will not be able to ascertain that we have made an improvement,

however if we reject Ho we can be 95% certain that we have increased the average

revenue by utilization of our heuristic.

7.2 Example I

Below are shown the heuristic output and the optimal static price output for

Example I, which, as was mentioned previously, is very similar to the models used by

[PT99].

56

Optimal Dynamic versus Optimal Static Pricing - Summary Statistics:

Optimal
Static

Dynamic Policy Policy
Standard Average Actual Percent

Mean Deviation Revenue Increase Increase
1119.1022 2.0233 975.3089 143.7933 14.74%

Table 7-1 Example I: comparison of Dynamic and Static Pricing

Hypothesis testing:

to = 389.259

ta,„-i = 1-699

Since to > t^n-i, we reject the null hypothesis.

Rate of Correct State Estimation: 62%

Steady State Probability Comparison:

P(ds1=0)
P(ds1=1)
P(ds1=2)

P(ds2=0)
P(ds2=1)
P(ds2=2)

From
Simulation Actual

0.3331 0.333333
0.3339 0.333333

0.333 0.333333

0.3322 0.333333
0.3337 0.333333
0.3341 0.333333

Table 7-2 Example I: Steady State Probabilities

57

Alternative Demand State Estimation Technique: The gain in revenue which resulted

from the addition of the cost considerations in the classification portion of the heuristic

are as follows:

Including

Mean
1119.1022

Costs
Standard
Deviation

2.0233

Not Including Costs
Standard

Mean
1117.0523

Deviation
6.5426

Actual
Increase

2.0499

Percent
Increase

0.18%

Table 7-3 Example I: Alternative Demand State Estimation Results

In the following section we will conduct a hypothesis test to determine the significance of

this increase.

Verification of Optimal Static Pricing: The optimal static pricing policy results (which

was computed from the algorithm developed in Chapter 5) were also validated by the

simulation with the following results.

Static Policy Validation
Solution
Js

975.3089

Simulated Result
Mean

970.7465
Std Dev

4.0615

Table 7-4 Example I: Static Policy Validation

7.3 Example II

Example II represents the approximate bandwidth available from a single channel

of a cable TV company which is utilizing the DOCSIS protocol.

58

Optimal Dynamic versus Optimal Static Pricing - Summary Statistics:

Dynamic Policy
Standard

Mean Deviation

Optimal
Static
Policy
Average
Revenue

Actual
Increase

Percent
Increase

0.0362 0.0008 0.0204 0.0158 77.64%

Table 7-5 Example II: comparison of Dynamic and Static Pricing

Hypothesis testing:

to =114.8547

ta,n-i = 1-699

Since to> ta>n-i, we reject the null hypothesis.

Rate of Correct State Estimation: 96.45

Steady State Probability Comparison:

P(ds1=0)
P(ds1=1)
P(ds1=2)

P(ds2=0)
P(ds2=1)
P(ds2=2)

From
Simulation Actual

0.335209
0.331458
0.333333

0.326625
0.338911
0.334464

0.333333
0.333333
0.333333

0.333333
0.333333
0.333333

Table 7-6 Example II: Steady State Probabilities

59

Alternative Demand State Estimation Technique: The gain in revenue which resulted

from the addition of the cost considerations in the classification portion of the heuristic is

as follows.

Including Costs
Standard

Mean Deviation

Not Including Costs
Standard

Mean
0.036176 0.0008 0.036085 0.0008 0.0001

Deviation
Actual

Increase
Percent
Increase

0.25%

Table 7-7 Example II: Alternative Demand State Estimation Results

In the following section we will conduct an hypothesis test to determine the significance

of this increase.

Verification of Optimal Static Pricing: The optimal static pricing policy results (which

was computed from the algorithm developed in Chapter 5) were also validated by the

simulation with the following results:

Static Policy Validation
Solution
Js

0.0204

Simulated Result
Mean
0.020399

Std Dev
0.00105

Table 7-8 Example I: Static Policy Validation

7.4 Example III

Example III is identical to Example II except for the service time distribution.

Optimal Dynamic versus Optimal Static Pricing - Summary Statistics:

Dynamic

Mean

; Policy
Standard
Deviation

Optimal
Static
Policy
Average
Revenue

Actual
Increase

Percent
Increase

0.0217 0.0003 0.0196 0.0020 10.24%

Table 7-9 Example III: comparison of Dynamic and Static Pricing

60

Hypothesis testing:

to = 33.31014

ta,n-i = 1-699

Since to > t^n-i, we reject the null hypothesis.

Rate of Correct State Estimation: 95.90%

Steady State Probability Comparison:

P(ds1=0)
P(ds1=1)
P(ds1=2)

P(ds2=0)
P(ds2=1)
P(ds2=2)

From
Simulation Actual

0.324210
0.336201
0.339581

0.327826
0.333080
0.339094

0.333333
0.333333
0.333333

0.333333
0.333333
0.333333

Table 7-10 Example III: Steady State Probabilities

7.5 Discussion:

The results from Sections 7.2-7.4 are summarized in the table below.

Optimal
Static

Dynamic Policy Policy
Standard Average Actual Percent

Ex. Mean Deviation Revenue Increase Increase to t,.05,30
1 1119.1022 2.0223 975.3089 143.793 $ 14.74% 385.28 1.699
II 0.0362 0.0008 0.0204 0.0158 77.64% 114.85 1.699
III 0.0217 0.0003 0.0196 0.0020 10.24% 33.31 1.699

Table 7-11 Consolidated Results - Dynamic vs. Static Pricing

In all three Examples we have failed to reject the null hypothesis, and therefore

we can conclude with 95% certainty that the heuristic produces a revenue increase.

Indeed in Example II the increase in revenue is substantial. This would amount to over a

61

half a million dollars a year. Indeed, assuming a time interval for Example 1 of one hour

(as opposed to seconds for examples 2 and 3) this gain in revenue is also over half a

million dollars a year. Example 3 would provide a gain of only around $96,000.

The gain experienced in Example 2 is by far the greatest. This model also has the

highest average demand given the relationship between the demand rates and service

times. Example 3 is very close to Example 2 in demand functions, but the difference in

the relationship of the service times to the effective bandwidth appears to have had

significant impact. This relationship can be captured to some extent by a parameter

[PT99] used to distinguish demand strength, p:

/lo, i * n
P-

R*f£

This parameter captures a measure of the average demand. By looking at the

values of p for the models in Case 2 the lower values of p are in the class which is

dominant in the revenue growth (class 2), while in case 3 the lower values of p are in the

class which is less dominant.

Values of p:

Case 2 Case 3
Model Class 1 Class 2 Class 1 Class 2

1A2E 10667 667 1333 5333
1A2F 10667 533 1333 4267
1A2G 10667 400 1333 3200
1B2E 8000 667 1000 5333
1B2F 8000 533 1000 4267
1B2G 8000 400 1000 3200
1C2E 5333 667 667 5333
1C2F 5333 533 667 4267
1C2G 5333 400 667 3200

Table 7-12 Calculation of p

62

The values of p for Case 1 were approximately one for all models, a significant

difference from cases 2 and 3.

The utilization of the cost ratios in the classification portion of the heuristic

appears to have provided a modest gain in performance. To conclude whether or not this

is true we conducted another hypothesis test, which in this case is slightly different than

the previous test. This time our test will be as follows:

let JCi = simulation sample mean

Sj = sample variance

where

i = 1 if using the cost ratios in classification,

i =2 otherwise (not using cost ratio)

Ho: Xl=Xl

Hi: Xl>X2

Our test statistic:

to =
S±_ + Si_
Ml «2

where our criteria for rejection is

to > ta, v

2 2 2

where v = 2
m m 2 2

(«1 + 1) («2 + 1)

63

The reason we are using this test now is that we are comparing the mean of two processes

of which the variances are unknown and unequal. The reason that the variances are

unequal is that by changing the classification rule we change the underlying process.

The result:

Example
1
2

Including

Mean

3 Costs
Standard
Deviation

Not Including Costs
Standard

Mean Deviation
Actual

Increase
Percent
Increase

1119.10 2.02 1117.05 6.54 2.0499 0.18%
0.036176 0.0008 0.036085 0.0008 0.0001 0.25%

Table 7-13 Consolidated Results - Comparison of Alternate Estimation Procedure

Example to nu t.alpha.nu
1
2

1.639494
0.452

36.87567
62

1.688
1.67

Table 7-14 Hypothesis Tests of Comparison

In this instance we fail to reject the hypothesis for both cases, and must conclude that the

addition of the cost ratios in the heuristic does not provide a significant increase in

revenue.

64

Chapter 8. Conclusions and Recommendations

8.1 Conclusions

This work explores the relationship between optimal static and sub-optimal

dynamic pricing in an environment where demand is unknown and changing in time. To

accomplish this we have developed a heuristic that examines the allocation of a network

resource, bandwidth, at the user level (albeit somewhat grossly, with the assumption of

effective bandwidth greatly simplifying our work). This heuristic solves a finite number

of perfect information Markov decision problems, one for each demand state profile, and

then uses these solutions along with partial observations of the demand state gained from

user arrivals to generate a dynamic pricing policy for the network that is capable of gains

in revenue of up to 80% over the revenue of an optimal statically priced system.

This work contributes to the large amount of recent research into network pricing

which primarily examines the concept from a static point of view. Most analysis in this

area of research assumes a constant load upon the system, and does explicitly

accommodate the stochastic nature of arrivals and departures, as does our heuristic. In the

more common formulation of the system demand, the instantaneous rate of request

arrivals is assumed to be a constant and known function of price, and prices are adjusted

to find an optimal mix of the user classes. Our formulation takes into account the

stochastic nature of demand and takes advantage of the gains in revenue which can be

made from fluctuations in this demand. We feel that this framework used to model

demand is likely to be more realistic in that it can account for unpredictable periods of

higher and lower demand.

65

This heuristic is similar to Open Loop Feedback Control [B95] which generates a

suboptimal solution to a POMDP by examining the state of the system upon each partial

observation and enacting the control which would be optimal on the basis that no further

observations will become available to update the system.

Additionally, we have developed a state estimation algorithm to determine which

of the demand states is most likely for each service class. This estimation algorithm is

capable of correct classification rates as high as 96%, with the lowest observed rate being

62%. In all cases the prior probabilities of the class distribution were equal to 1/3, thus

the classification algorithm provides significant benefit in determining the state of the

system.

8.2 Recommendations for Future Work

We believe the next step in this research will be to expand the study to additional

models to attempt to determine a relationship between the gain possible by the heuristic

and the input parameters of the demand functions, service times, and bandwidth

requirements. It may be possible to generalize the results in terms of these parameters to

establish a quick prediction of the gains possible from implementation of the heuristic.

These insights could be of great value in other application domains where resource

allocation can be done from an economic perspective.

We believe the next essential step following this will involve the modeling of

actual network demand to determine the extent to which this heuristic can be used in

increasing revenue. The work by [KA98] into on-line estimation of linear demand

functions for network services could be extended to this model to gain some certainty

66

about the nature of the demand functions. From this we could determine the amount of

gain to expect from these actual parameters.

Following this, the work should be expanded by incorporating explicit models for

statistical multiplexing in networks, where fluctuations in bandwidth requirements are

considered. In this way a more accurate analysis of network qualities of service can be

conducted. Adaptation of this heuristic to include the constraints imposed by service

guarantees would provide a complete heuristic which could be implemented on any

network.

This type of formulation can be used to optimize alternative metrics, beyond the

revenue achieved for anetwork service provider. [PT99] used a very similar formulation

to analyze a measure of network welfare. Another possible application is in military

networks where it would be appropriate to maximize a measure of the priority of

information that traverses a network. The goal here would be to minimize the congestion

due to the excessive transmission of relatively unimportant information.

67

BIBLIOGRAPHY

[B95] D. P. Bertsekas. Dynamic Programming and Optimal Control. Vol. I. & II.
Athena Scientific, 1995.
[B99] Y. Bernet, et al. Differentiated Services. Working Paper, Internet
Engineering Task Force (IETF), 1999
[BRS99] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion
Management Architecture for Internet Hosts. Proceedings ACM SIGCOMM, 1999.
[CKL94] A. R. Cassandra, L. P. Kaelbing, and M. L. Liftman. Acting Optimally in

Partially Observable Stochastic Domains. Working Paper CS-94-20, Department of
Computer Science, Brown University. April 1994
[CP99] A. Croll and E. Packman. Managing Bandwidth: Deploying QoS in
Enterprise Networks, Prentice Hall, 1999.
[E86] H. K. Eldeib. Multistage Decision Making with Imprecise Information:
Mathematical Modeling and Computational Procedures. Dissertation. Department of
Systems Engineering, University of Virginia, 1986.
[GC98] H. R. Gibson and B. Com. Easing the Internet Traffic Jam: A Comparison
of Traffic Expansion and Congestion Tolls as Competing alternatives for Reducing
Internet Congestion. Thesis. The University of Newcastle, Australia. 1998
[GSW94] A. Gupta, D. O. Stahl, and A. B. Whinston. An Economic approach to
Network Computing with Priority classes. The University of Texas at Austin, 1995.
[GSW95] A. Gupta, D. O. Stahl, and A. B. Whinston. The Internet: A future tragedy
Of The Commons? The University of Texas at Austin, 1995.
[GSW95a] A. Gupta, D. O. Stahl, and A. B. Whinston. Pricing of Services on the
Internet. The University of Texas at Austin, 1995.
[GSW95b] A. Gupta, D. O. Stahl, and A. B. Whinston. A Stochastic Equilibrium
Model of Internet Pricing. The University of Texas at Austin, 1995.
[GSW95d] A. Gupta, D. O. Stahl, and A. B. Whinston. Priority Pricing of Integrated
Services Networks. The University of Texas at Austin, 1995.
[H74] A. Hordijk. Dynamic Programming and Markov Potential Theory.
Mathematisch Cetrum, 1974.
[HM80] W. Hines and D. Montgomery. Probability and Statistics in Engineering
and Management Science. John Wiley and Sons, 1980.
[KA98] N. Keon and G Anandalingam. Real Time Pricing of Multiple
Telecommunications Services Under Uncertain demand. Working Paper 98-13,
Department of Systems Engineering, University of Pennsylvania, 1998.
[KA99] N. Keon and G Anandalingam. Adaptive flow Control for VoD Using
Price Discounts. Department of Systems Engineering, University of Pennsylvania, 1998.
[KG99] F. Kelly and R. Gibbens. Pricing the Internet: Resource Pricing and the
Evolution of Congestion Control.
http://www.statslab.cam.ac.uk/~diwlOQ5/Stats/Compete/
[KM99] P. B. Key and D. R. McAuley. differential QoS and Pricing in Networks:
where flow-control meets game theory. IEE Proceedings Software, March 1999.
[KMB99] P. B. Key, D. R. McAuley, and P. Barham. Congestion Pricing for
Congestion Avoidance. Technical Report, Microsoft Research, Cambridge, UK 1999.

68

[L90] J. Lark. Applications of Best-First Heuristic Search to Finite-Horizon
Partially Observed Markov Decision Processes. Dissertation. Department of Systems
Engineering, University of Virginia, 1990.
[LK91] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 1991.
[LS83] L. Ljung and T. Soderstrom. Theory and Practice of Recursive
Identification. MIT Press, 1983.
[L90] W. Lovejoy An Approximate Algorithm, With Bounds, For Composite
State Partially Observed Markov Decision Problems. Proceedings, 29th Conference on
Decision and Control, IEEE 1990.
[LSP87] R. Lipsey, P. Steiner, and D. Purvis. Economics. Harper & Row, 1987.
[MB99] C.R. McConnnell and S.L. Brue. Economics: Principles, Problems, and
Policies. 14th Edition. Irwin McGraw-Hill, 1999.
[MSM097] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behaviour
of the TCP Congestion Avoidance Algorithm. Computer Communications Review, Vol
27, No. 3, July 1997.
[097] A. Odlyzko. A Modest Proposal for Preventing Internet Congestion.
DIMACS Technical Report 97-68. AT&T Labs-Research, 1997.
[PTVF94]W. Press, s. Teukolsky, W. Vettering, B. Flannery. Numerical Recipes in C,

Second Edition. Cambridge University Press, 1994.
[PT99] I Ch. Paschaldis and J. N. Tsitsiklis. Congestion-Dependent Pricing of

Network Services. Technical Report, Systems Group, Department of Manufacturing
Engineering, Boston University, 1998.
[R99] Ripley, B.D. Pattern Recognition and Neural Networks. University Press,
Cambridge, 1999.
[RS83] Ross, S.M. Stochastic Processes. John Wiley & Sons, Inc. 1983.
[S78] E. Sondik. The Optimal control of Partially Observable Markov Processes
over the Infinite Horizon: Discounted Costs. Operations Research, 1978.
[T96] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

69

A Computer Code

A-1: Simulation of Heuristic: Pseudo code

The following is the pseudo code for the simulation:

/* simulation of heuristic */
/* establish new random number generator */
/* define variables to use in program*/
/* assign values to variables */
/* establish all possible system states

if (n[l]*r[l]) + (n[2]*r[2]) <= R state is possible
/* Read in optimal dynamic pricing policies from MDP solutions */
/* generate starting system data */
/* set initial prior probabilities */
/* generate random objects and set seed */
Repeat the following for 31 replications:

while not converged:
/* generate arrival rates for classes based on current prices and hidden Markov chain
/* randomnly generate arrival times for both classes
/* generate departure rates for classes based on meu[class] * nfclass]
/* randomnly generate departure times for both classes
/* randomnly generate transition times for classes for increase and decrease of demand
/* select the event with the earliest occurrence and cancel all other transaction

if a departure is going to occur:
/* update time;
/* update system state;
/* execute classification rule if system is not at full load:

(if ((n[l]*r[l] + n[2]*r[2]) < (Bandwidth - r[departclass]))
/* set new price based upon updated system state;
/* goto while not converged

if a shift demand state is going to occur:
/* update time;
/* update hidden Markov Chain
/* goto while not converged

if an arrival is going to occur:
/* update time;/
/* update revenue based upon current price
/* calculate average revenue (total revenue / time)
/* update system state;
/* execute classification rule
/* set new price based upon updated system state;
/* goto while not converged

} /* end while not converged
Write statistics on replication to output files

} /* end for 31 replications
Calculate overall statistics and write to output file

END SIMULATION.

70

A-2: Simulation of Heuristic: Pseudo code

Following is the actual C code for the simulation:

/* simulation of heuristic */
/* FILE CURRENTLY SET UP To
run Example 2. */
#include <stdlib.h>
#include <stdio.h>
include <math.h>
/* establish new random number generator */

#define IM1 2147483563
#define IM2 2147483399
#defineAM(1.0/IMl)
#define IMM1 (Dvll-l)
#defmeIAl 40014
#defme IA2 40692
#define IQ1 53668
«define IQ2 52774
#defmeIRl 12211
#defmeIR2 3791
#defmeNTAB32
#defme NDIV (1+MM1/NTAB)
#defineEPS1.2e-7
#defineRNMX(1.0-EPS)
float random(long *idum)
{ int e;
long k;
static long idum2=123456789;
static long iy=0;
static long ivfNTAB];
float temp;
if(*idum<=0){

if(-(*idum)<l)*idum=l;
else *idum=-(*idum);
idum2 = (*idum);
for (e=NTAB+7; e>=0;e-){

k=(*idum)/IQl;
idum=IAl(*idum-k*IQl)-k*IRl;
if(*idum<0)*idum +=IM1;
if (e<NTAB) iv[e] = »idurn;

}
iy=iv[0];
}
k=(*idum)/IQl;
idum=IAl(*idum-k*IQl)-k*IRl;
if (*idum <0) *idum += IM1;
k = idum2/IQ2;
idum2=IA2*(idum2-k*IQ2)-k*IR2;
if (idum2<0) idum2 += M2;
e=iy/NDIV;
iy=iv[e]-idum2;
iv[e]=*idum;
if(iy<l)iy+=IMMl;
if ((temp=AM*iy) > RNMX) return RNMX;
else return temp;

}
mainO
{
/* define variables to use in program*/

intM = 2; /* Number of service classes */
double Bandwidth; /* Total bandwidth avail (in Mbps) */
double r[3]; /* required by service class */
double a[3][3]; /* demand equation parameters [class][demand state]*/
double b[3][3]; /* demand equation parameters [class][demand state]*/
int nmaxl = 13; /* max number in system class 1 */

71

int nmax2 = 54; /* value = FLOOR(R / r[i]) */
int N[15][56]; /* system states*/
double h[4][3][15][56]; /* revenue stream expected in demand state dsl & ds2 from nl n2 state */
intnml[3][3];
intnm2[3][3];
double ul[3][3][15][56]; /* optimal prices obtained from data files for [ds][nl][n2] */
double u2[3][3][15][56];
intaa;
int bb;
intl;
int 11;
double gh;
double converg;
double avgrtn[3][3];
double newnum[3];
double newdenom;
double newprob[3][3];
double ucurrent[3];
double var;
double increment; /* amount that price is incremented by */
double meu[3]; /* service rate for class i */
double alfa[3][3]; /* transition rate (increasing) for state i from demand state ds */
double beta[3][3]; /* transition rate (decreasing) for state i from demand state ds */
double newdl;
int ds[3]; /* demand state */
int pds[3]; /* perceived demand state */
intt;
int s;
double prob[3][3];
double g[3][3];
double f[3];
double lambdalam[3];
double conv;
double tau; /* interarrival time */
double totalrevenue;
double averagerevenue; /* totalrevenue / time */
double oldaverage;
double time; /* sim clock */
intn[3];
double iteration;
double q;
long arrive[3]; /* random number hlder for arrival of [class] */
double arriveuniform[3]; /* normalized random number between 0 and 1 */
double arrivaltime[3];
double lambda[3]; /* current arrival rate [class] */
int arriveclass;
int shiftup[3]; /* random number hlder for shift in demand state for [class]*/
double shiftuptime[3];
double shiftupuniform[3]; /* normalized random number between 0 and 1 */
int shiftupclass;
int shiftdown[3]; /* random number hlder for shift in demand state for [class]*/
double shiftdowntime[3];
double shiftdownuniform[3]; /* normalized random number between 0 and 1 */
int shiftdownclass;
int depart[3];
double departtime[3];
double departuniform[3];
double departlambda[3];
int departclass;
int shift2;
intshiftl;
int i;
int j;
chare;
long fl;
float fop;
charx[81];
chary;
double classright;
double classtotal;

72

double classrate;
int replication;
double oldtime;
double oldtimel;
double timedsll;
double probdsll;
double timedsl2;
double probdsl2;
double timeds 10;
double probds 10;
double timeds21;
double probds21;
double timeds22;
double probds22;
double timeds20;
double probds20;
double avgrevcalc[31];
double sigmatotal;
double nef;
double classdptright;
double classdpttotal;
double totaltime;
long Ion;

FILE *fp;
FILE »stream;
FILE *out;
FILE »classification;
FILE »classi;
FILE *rep0;
FILE »checkdmd;

classi = fopen("departclass.txt", "w+");
checkdmd = fopen("chkdmdl.txt", "w+");
out = fopenO'SHORTRUN.txt", "w+");
classification = fopen("classification with costs.txt", "w+");
repO = fopen("replicationO stats.txt", "w+");
fprintf(checkdmd, "time at dsl for class l:\t");
fprinttX out, "replication \t");
fprintf(out, "time \t");
fprintf(out, "iteration^");
fprintf(out, "converg\t");
fprintf(out," averagerevenue\t");
fprintf(out, "classright\t");
fprintf(out, "classtotaftt");
fprintf(out," classrateW);
fprintf(classification, "arrclas:");
fprintf(classification," tau \t");
fprintf(classification, "ucurrent \t");
fprintf(classification, "prob[0]: \t");
fprintf(classification, "prob[l]: \t");
fprintf(classification, "prob[2]: \t");
fprintf(classification, "pds[i]: \t");
fprintf(classification, "ds[i]: \t");
fprintf(classification, "correct? \n");
fprintf(classi, "dptclas:");
fprintf(classi," tau \t");
fprintf(classi, "ucurrent \t");
fprintf(classi, "prob[0]: \t");
fprintfi; classi, "prob[l]: \t");
fprintf(classi, "prob[2]: \t");
fprintf(classi, "pds[i]: \t");
fprintf(classi, "ds[i]: \t");
fprintf(classi, "correct? \n");

for (i = 0; i<=30; i++)
avgrevcalc[i] = 0;
sigmatotal = 0;

fp = fopen("lA2E.txt", "r+");
stream = fopen("lA2E.txt", "r+");

/* assign values to variables */

73

a[l][0] = 20;/* a value class i demand state ds */
a[2][0] = 10;
a[l][l]=15;
a[2][l] = 8;
a[l][2] = 10;
a[2][2] = 6;
b[l][0] = 2.0;
b[2][0] = 3.0;
b[l][l] = 2.0;
b[2][l] = 3.0;
b[l][2] = 2.0;
b[2][2] = 3.0;

r[l] = 2; /* bandwidth required by service class */
r[2] = .5;
meu[l]=.000139; /* service rate for a sertvice time = 2 hrs */
meu[2]=.000278; /* service rate for a sertvice time = 1 hr */
alfa[l][0] = .0000695; /* transition rate for an increase in 4 hours */
alfa[l][l] = .0000695; /* transition rate for an increase in 4 hours */
alfa[l][2] = 0; /* not a possible transition */
alfa[2][0] = .0000926; /* transition rate for an increase in 3 hours */
alfa[2][l] = .0000926; /* transition rate for an increase in 3 hours */
alfa[2][2] = 0; /* not a possible transition */
beta[l][0] = 0; /* not a possible transition */
beta[l][l] = .0000695; /* transition rate for an decrease in 6 hours */
beta[l][2] = .0000695; /* transition rate for an decrease in 6 hours */
beta[2][0] = 0; /* not a possible transition */
beta[2][l] = .0000926; /* transition rate for an decrease in 3 hours */
beta[2][2] = .0000926; /* transition rate for an decrease in 3 hours */
increment = .25; /* prices incremented by */
Bandwidth = 27; /* R FOR A CABLE NETWORK - USING 1 DOWNSTREAM

CHANNEL */
/* establish all possible system states
setN[][] = 1 if state possible o.w. = 0 */

for (i = 0; i <= nmaxl; i++)
{

n[l] = i;
for (j = 0; j <= nmax2; j++)
{

n[2] =j;
var = (n[l]*r[i]) + (n[2]*r[2]);
if(var <= Bandwidth)

N[n[l]][n[2]]=l;
elseN[n[l]][n[2]] = 0;

} /* end for j */
} /* end for i */

N[nmaxl+l][nmax2] = 0;
N[nmaxl][nmax2+1] = 0;
N[nmaxl+l][nmax2+l] = 0;

/* Read in optimal pricing data from 9 solved problems: */
for (t=0; t<=2; t++)

{
for (s=0; s<=2; s++)
{

if ((t=0) && (s=0))
fp = fopen("lA2E.txt","r+");

else if ((t=0)&&(s=l))
fp = fopen("lA2F.txt","r+");

else if ((t=0)&&(s=2))
fp = fopen("lA2G.txt","r+");

else if ((t=l) && (s=0))
fp = fopen("lB2E.txt","r+");

else if ((t=l)&&(s=l))
fp = fopen("lB2F.txt","r+");

else if ((t=l)&&(s=2))
fp = fopen("lB2G.txt","r+");

elseif((t=2)&&(s=0))
fp = fopen("lC2E.txt","r+");

elseif((t=2)&&(s=l))
fp = fopen("lC2F.txt","r+");

elseif((t=2)&&(s=2))

74

fp = fopen("lC2G.txt","r+");
if(fp = NULL)

{
printf("The file was not opened\n");
printf("t= %3d s = %3d \n", t,s);
printf("\n \n");
c=getcharO;

}
else
{

iteration = 0;
fseek(fp, OL, SEEK_SET);
fscanf(fp, "%lf', &iteration);
fscanf(fp," %d", &nml[t][s]);
fscanf(fp," %d", &nm2[t][s]);
fscanf(fp," %lf", &avgrtn[t][s]);
for (aa=0; aa <= nml[t][s]; aa++)

{
for (bb=0; bb <= nm2[t][s]; bb++)

{
fscanf(fp, "%d", &1);
fscanf(fp, "%d", &11);
fscanf(fp, "%d", &N[1][11]);
fscanf(fp, "%lf', &h[t][s][l][ll]);
fscanf(fp, "%lf, &ul[t][s][l][ll]);
fscanf(fp, "%lf', &u2[t][s][l][ll]);
fscanf(stream, "%s", x);

fclose(fp);
}

} /* end for s */
} /* end fort */
/* generate starting system data */

time = 0;
n[l] = 0;
n[2] = 0;
ds[l] = 0;
ds[2] = 0;
pds[l] = 0;
pds[2] = 0;
time = 0;
totalrevenue = 0;
iteration = 0;
ucurrent[l]=l;
ucurrent[2]=l;
classright=0;
classtotal=0;
classdptright=0;
classdpttotal=0;
totaltime = 0;
timedsll = 0;
timedsl2 = 0;
timedsl0 = 0;
timeds21 = 0;
timeds22 = 0;
timeds20 = 0;

/* set initial prior probabilities */
prob[l][0] = (1.0/3.0);
prob[l][l] = 1.0/3.0;
prob[l][2] = 1.0/3.0;
prob[2][0] = (1.0/3.0);
prob[2][l] = 1.0/3.0;
prob[2][2] = 1.0/3.0;

/* generate random objects and set seed */
Ion = 7;

/* generate shiftup rates for classes and departure rates b*/
for (replication = 0; replication <=31; replication++)

{
converg = 99999;

/* reusing variable as the current number in [class] */

75

oldtime = 0;
oldtimel=0;

conv= 1;
while (conv > 0)

{
iteration-»-»-;
tau=99999999;

/* generate arrival rates for classes based on current prices */
lambda[l] = a[l][ds[l]] - b[l][ds[l]]*ucurrent[l];
lambda[2] = a[2][ds[2]] - (b[2][ds[2]]*ucurrent[2]);

if ((lambda[l] < 0) || (lambda[2] < 0))

{
printf("a[i][ds[i]]: %6.6f\t %6.6f\n ",a[l][ds[l]],a[2][ds[2]]);
printf("b[i][ds[i]]: %6.6f\t %6.6f\n ",b[l][ds[l]],b[2][ds[2]]);
printf("ds[i]: %3d\t %3d\n ",ds[l],ds[2]);
printf("ucurrent[i]: %6.12f\t %6.12f\n ",ucurrent[l],ucurrent[2]);
printf("lambda[i]: %6.12f\t %6.12f\n \n",lambda[l],lambda[2]);

}
/* generate departure rates for classes based on meu[class] * n[class] */

departlambda[l] = meu[l] * n[l];
departlambda[2] = meu[2] * n[2]; /*

/* generate arrival times or passage times for each attribute (num in sys, class 1 & 2, dsl&2 */
if(N[n[l]+l][n[2]] = l)
{ arri veuniform [1] = random(&lon);

arrivaltime[l] = - (l/lambda[l]) * log(arriveuniform[l]);

}
else arrivaltimefl] = 99999999;
if(N[n[l]][n[2]+l] = l)
{

arriveuniform[2] = random(&lon);
arrivaltime[2] = - (l/lambda[2]) * log(arriveuniform[2]);

}
else arrivaltime[2] = 99999999;

if (ds[l] <= 1)
{

shiftupuniform[l] = random(&lon);
shiftuptime[l] = - (l/alfa[l][ds[l]]) * log(shiftupuniform[l]);

}
else shiftuptime[l] = 999999999;
if(ds[2]<=l)
{

shiftupuniform[2] = random(&lon);
shiftuptime[2] = - (l/alfa[2][ds[2]]) * log(shiftupuniform[2]);

}
else shiftuptime[2] = 999999999;
if (ds[l] >= 1)
{

shiftdownuniform[l] = random(&lon);
shiftdowntime[l] = - (^eta[l][ds[l]]) * log(shiftdownuniform[l]);

}
else shiftdowntime[l] = 999999999;
if (ds[2] >= 1)
{

shiftdownuniform[2] = random(&lon);
shiftdowntime[2] = - (l/beta[2][ds[2]]) * log(shiftdownuniform[2]);

}
else shiftdowntime[2] = 999999999;

if(n[l]>0)
{

departuniform[l] = random(&lon);
departtime[l] = - (l/departlambda[l]) * log(departuniform[l]);

}
else deparrtime[l] = 99999999;
if (n[2] > 0)
{ departuniform[2] = random(&lon);

departtime[2] = - (l/departlambda[2]) * log(departuniform[2]);

}
else departtime[2] = 99999999;
/* calculate which time is first - set equal to tau */

shiftupclass = 0;

76

departclass = 0;
arriveclass = 0;
shiftdownclass = 0;

if (arrivaltime[1]<arrivaltime[2])
{ tau = arrivaltime[l];

arriveclass = 1;

}
else
{ tau = arrivaltime[2];
arriveclass = 2; }

if (departtime[l]<tau)
{ tau = departtime[l];

arriveclass = 0;
departclass = 1; }

if (departtime[2]<tau)
{ tau = departtime[2];

arriveclass = 0;
departclass = 2; }

if(shiftuptime[l]<tau)
{ departclass = 0;

arriveclass = 0;
tau = shiftuptime[l];
shiftupclass = 1; }

if(shiftuptime[2]<tau)
{ tau = shiftuptime[2];

departclass = 0;
arriveclass = 0;
shiftupclass = 2; }

if (shiftdowntime[l]<tau)
{ shiftupclass = 0;

departclass = 0;
arriveclass = 0;
tau = shiftdowntime[l];
shiftdownclass = 1; }

if (shiftdowntime[2]<tau)
{ shiftupclass = 0;

departclass = 0;
arriveclass = 0;
tau = shiftdowntime[2];
shiftdownclass = 2; }

/* if departure:*/
if (departclass != 0)
{

/* update time;*/
time = time + tau;

/* the following will update pds[departureclass] iff the system is not at full load,
intent is to decrease prob of being in incorrect state and provide a mechanism for
changing price and pds other than at the arrival of a user */

if ((n[l]*r[l] + n[2]*r[2]) < (Bandwidth - r[departclass]))

{
g[l][0] = beta[departclass][l]*tau;
g[l][2] = alfa[departclass][l]*tau;
g[l][l] = l-g[l][0]-g[l][2];
g[0][l] = alfa[departclass][0]*tau;
g[0][0] = l-g[0][l];
g[0][2] = 0;
g[2][0] = 0;
g[2][l] = beta[departclass][2]*tau;
g[2][2] = l-g[2][l];
lambdalam[0] = (a[departclass][0] - b[departclass][0]*ucurrent[departclass]);
lambdalamfl] = (a[departclass][l] - b[departclass][l]*ucurrent[departclass]);
lambdalam[2] = (a[departclass][2] - b[departclass][2]*ucurrent[departclassj);
if(lambdalam[0]>0)

fI0] =exp(-tau*lambdalam[0]);
elsef[0]= 1;
if(lambdalam[l]>0)
f[l] = exp(-tau*lambdalam[l]);
elsef[l] = l;
if(lambdalam[2]>0)
f[2] = exp(-tau*lambdalam[2]);

77

elsefI2] = l;
if((f[0]<0)||(f[l]<0)||(f[l]<0))

c=getcharO;
if((fl0]>l)ll(fll]>l)ll(fll]>l))

c=getcharO;
newdenom = 0;

for (i=0; i<=2; i++)

{
newdl=g[0][i] * f[0] * prob[departclass][0];

prob[departclass][l])
newdenom = newdenom + (g[0][i] * f[0] * prob[departclass][0]) + (g[l][i] * f[l] *

+ (g[2][i] * f[2] * prob[departclass][2]);
newnum[i] = (g[0][i] * f[0] * prob[departclass][0]) + (g[l][i] * f[l] *

+ (gP][i] * f[2] * prob[departclass][2]);
prob[departclass][l])

}
if (newdenom != 0)

{
newprob[departclass][0] = newnum[0] / newdenom;
newprob[departclass][l] = newnumfl] / newdenom;
newprob[departclass][2] = newnum[2] / newdenom;
prob[departclass][0] = newprob[departclass][0];
prob[departclass][l] = newprob[departclass][l];
prob [departclass] [2] = newprob[departclass][2];
/♦add cost factor and classify - see if we can improve:
re-using some variables - must reset after classification rule used */
if (departclass = 1)
{

prob[departclass][0] = prob[departclass][0]*avgrtn[0][pds[2]];
prob[departcIass][l] = prob[departclass][l]*avgrtn[l][pds[2]];
prob[departclass][2] = prob[departclass][2]*avgrtn[2][pds[2]j;

}
else {

prob[departclass][0] = prob[departclass][0]*avgrtn[pds[l]][0];
prob[departclass][l] = prob[departclass][l]*avgrtn[pds[l]][l];
prob[departclass][2] = prob[departclass][2]*avgrtn[pds[l]][2];

}
/* classify demand state (highest probability);*/
if ((prob [departclass] [0] > prob[departclass][l]) && (prob[departclass][0] > prob[departclass][2]))

pds[departclass] = 0;
else if ((prob[departclass][l] > prob[departclass][0]) && (prob[departclass][l] > prob[departclass][2]))

pds[departclass] = 1;
else pds[departclass] = 2;
/♦reset priors for next rep:*/
prob[departclass][0] = newprob[departclass][0];
prob[departclass][l] = newprob[departclass][l];
prob[departclass][2] = newprob[departclass][2];
if (replication = 1)
{

fprintf(classi, "%d\t", departclass);
fprintf(classi, "%f\t", tau);
fprintf(classi, "%f\t", ucurrent[departclass]);

fprintf(classi, "%f\t", prob[departclass][0])
fprintf(classi, "%f\t", prob[departclass][l])
fprintf(classi, "%f\t", prob[departclass][2])
fprintf(classi, "%d\t", pds[departclass]);
fprintf(classi, "%d\t", ds[departclass]);
if (pds[departclass] = ds[departclass])

fprintf(classi, "Y\n");
else fprintf(classi, "N\n"):

}

if(pds[departclass] = ds[departclass])
classdptright=classdptright+l;

classdpttotal=classdpttotal+1;
} /* if newdenom <> 0 ♦/
} /*endifnr<B-r*/
/* update state info;*/

78

if (departclass =1)
n[l] = n[l]-l;
elsen[2] = n[2]-l;
/* set new price;*/
ucurrent[l] = ul[pds[l]][pds[2]][n[l]][n[2]];
ucurrent[2] = u2[pds[l]][pds[2]][n[l]][n[2]];
if (ucurrent[l] > a[l][ds[l]]/b[l][ds[l]])

ucurrent[l] = a[l][ds[l]]/b[l][ds[l]];
if (ucurrent[2] > a[2][ds[2]]/b[2][ds[2]])

ucurrent[2] = a[2][ds[2]]/b[2][ds[2]];
departclass = 0;
} /* end if departclass */
/* goto while not converged */

/* if demand state (shiftup) transition: */
if(shiftupclass !=0)

{
/* update time;*/
time = time + tau;
if(ds[l] — 1)
{ timedsl 1 = timedsl 1 + (time - oldtimel);
oldtimel =time;}
if(ds[l]= 0)
{ timedslO = timedslO + (time - oldtimel);
nef= time - oldtimel;

fprintf(checkdmd, "%f\t", nef);
oldtimel = time;}
if(ds[l] = 2)
{ timedsl2 = timedsl2 + (time - oldtimel);
oldtimel =time;}
if (ds[2] = 1)
{ timeds21 = timeds21 + (time - oldtime);
oldtime = time;}
if (ds[2] = 0)
{ timeds20 = timeds20 + (time - oldtime);
oldtime = time;}
if(ds[2] = 2)
{ timeds22 = timeds22 + (time - oldtime);
oldtime = time;}
shiftl=shiftl + l;

/* change arrival rate data (lambda changes based on price in effect)*/
if (shiftupclass = 1)

ds[l]=ds[l]+l;
elseds[2]=ds[2]+l;
/* if the actual ds changes we must ensure prices are not exceeded */
if (ucurrent[l] > a[l][ds[l]]/b[l][ds[l]])

ucurrentfl] = a[l][ds[l]]/b[l][ds[l]];

if (ucurrent[2] > a[2][ds[2]]/b[2][ds[2]])
ucurrent[2] = a[2][ds[2]]/b[2][ds[2]];
shiftupclass = 0;
} /*end if shiftupclass */
/* goto while not converged */

if (shiftdownclass !=0)
{

/* update time;*/
time = time + tau;
if (ds[l] = 1)
{ timedsl 1 = timedsl 1 + (time - oldtimel);

nef= time-oldtimel;
fprintfl; checkdmd, "%f\t", nef);

oldtimel = time;}
if(ds[l]= 0)
{ timedslO = timedslO + (time - oldtimel);
oldtimel =time;}
if(ds[l] = 2)
{ timeds 12 = timeds 12 + (time - oldtime 1);
oldtimel =time;}

79

if (dsp] = 1)
{ timeds21 = timeds21 + (time - oldtime);
oldtime = time;}
if(ds[2]=0)
{ timeds20 = timeds20 + (time - oldtime);
oldtime = time;}
if(ds[2]==2)
{ timeds22 = timeds22 + (time - oldtime);
oldtime = time;}
shift2 = shift2+l;

/* change arrival rate data (lambda changes based on price in effect)*/
if (shiftdownclass = 1)
ds[l]=ds[l]-l;
elseds[2]=ds[2]-l;
/* if the actual ds changes we must ensure prices are not exceeded */
if (ucurrent[l] > a[l][ds[l]]/b[l][ds[l]])
ucurrent[l] = a[l][ds[l]]/b[l][ds[l]];

if (ucurrent[2] > a[2][ds[2]]/b[2][ds[2]])
ucurrent[2] = a[2][ds[2]]/b[2][ds[2]];
shiftdownclass = 0;
} /*end if shiftupclass */

/* if user arrival:*/
if(arriveclass !=0)
{
/* update time;*/
time = time + tau;
/* update total revenue and system state*/
totalrevenue = totalrevenue + ucurrent[aniveclass];
n[arriveclass] = n[arriveclass]+l;
/* calculate average revenue and check for convergence;*/
averagerevenue = totalrevenue / time;
converg = fabs (averagerevenue - oldaverage);

if (iteration > 100000)
{
printf("converged\n \n");
conv = -l;}
oldaverage = averagerevenue;

/* calculate prob of being in demand state i;*/
g[l][0] = beta[arriveclass][l]*tau;
g[l j[2] = alfa[arriveclass][l]*tau;
g[i][i] = i-g[l][0]-g[l][2];
g[0][l] = alfa[arriveclass][0]*tau;
g[0][0]=l-g[0][l];
g[0][2] = 0;
g[2][0] = 0;
g[2][l] = beta[arriveclass][2]*tau;
g[2][2]=l-g[2][l];
lambdalam[0] = a[arriveclass][0] - b[arriveclass][0]*ucurrent[arriveclass];
lambdalam[l] = a[arriveclassj[l] - b[arriveclass][l]*ucurrent[arriveclass];
lambdalam[2] = a[arriveclass][2] - b[arriveclass][2]*ucurrent[arriveclass];
if (lambdalam[0] > 0)
f[0] = lambdalam[0] * exp(-tau*lambdalam[0]);
else f[0] = 0;
if (lambdalam[l] > 0)
f[l] = lambdalam[l] * exp(-tau*lambdalam[l]);
else f[l] = 0;
if(lambdalam[2]>0)
f[2] = lambdalam[2] * exp(-tau*lambdalam[2]);
else f[2] = 0;

newdenom = 0;
for (i=0; i<=2; i++)
{
newdl=g[0][i] * f[0] * prob[arriveclass][0];
newdenom = newdenom + (g[0][i] * f[0] * prob[arriveclass][0]) + (g[l][i] * f[l] * prob[arriveclass][l])

+ (g[2] [i] * f[2] * prob[arriveclass] [2]);

80

newnum[i] = (g[0][i] * f[0] * prob[arriveclass][0]) + (g[l][i] * f[l] * prob[arriveclass][l])
+ (gP] [i] * f[2] * prob[arriveclass] [2]);

}
if (newdenom!=0)

{
newprob[arriveclass][0] = newnum[0] / newdenom;
newprob[arriveclass][l] = newnum[l] / newdenom;
newprob[arrivecIass][2] = newnum[2] / newdenom;
prob[arriveclass][0] = newprob[arriveclass][0];
prob[arriveclass][l] = newprob[arriveclass][l];
prob[arriveclass][2] = newprob[arriveclass][2];
/*add cost factor and classify - see if we can improve:
re-using some variables - must reset after classification rule used*/
if (arriveclass = 1)
{

prob[arriveclass][0] = prob[arriveclass][0]*avgrtn[0][pds[2]];
prob[arriveclass][l] = prob[arriveclass][l]*avgrtn[l][pds[2]];
prob[arriveclass][2] = prob[arriveclass][2]*avgrtn[2][pds[2]];

}
else {

prob[arriveclass][0] = prob[arriveclass][0]*avgrtn[pds[l]][0];
prob[arriveclass][l] = prob[arriveclass][l]*avgrtn[pds[l]][l];
prob[arriveclass][2] = prob[arriveclass][2]*avgrtn[pds[l]i[2];

}
/* classify demand state (highest probability);*/
if ((prob[arriveclass][0] > prob[arriveclass][l]) && (prob[arriveclass][0] > prob[arriveclass][2]))

pds[arriveclass] = 0;
else if ((prob[arriveclass][l] > prob[arriveclass][0]) && (prob[arriveclass][l] > prob[arriveclass][2]))

pds[arriveclass] = 1;
else pds [arriveclass] = 2;
/*reset priors for next rep:*/
prob[arriveclass] [0] = newprobfarriveclass] [0];
prob[arriveclass][l] = newprob[arriveclass][lj;
prob[arriveclass][2] = newprobfarriveclass] [2];
if ((prob[arriveclass][0]<0) || (prob[arriveclass][l]<0) || (prob[arriveclass][2] <0))

{
printf("prob[aiTiveclass][i]: %f\t %f\t %f\n", prob[arriveclass][0], prob[arriveclass][l], prob[arriveclass][2]);
printf("neg prob occurred \n \n");
c=getcharO;

}
if (replication = 1)
{

fprintf(classification, "%d\t", arriveclass);
fprintf(classification, "%f\t", tau);
fprintf(classification, "%f\t", ucurrent[arriveclass]);

fprintf(classification, "%f\t", prob[arriveclass][0]);
fprintf(classification, "%f\t", prob[arriveclass][l]);
fprintf(classification, "%£\t", prob [arriveclass] [2]);
fprintf(classification, "%d\t", pds[arriveclass]);
fprintf(classification, "%d\t", ds[arriveclass]);
if (pds[arriveclass] == ds[arriveclass])

fprintf(classification, "Y\n");
else fprintf(classification, ">An");

}
if(pds[arriveclass] = ds[arriveclass])

classright=classright+l;
classtotaI=classtotal+l;

}
/* set new price;*/
ucurrent[l] = ul[pds[l]][pds[2]][n[l]][n[2]];
ucurrent[2] = u2[pds[l]][pds[2]][n[l]][n[2]];

if (ucurrent[l] > a[l][ds[l]]/b[l][ds[l]])
ucurrent[l] = a[l][ds[l]]/b[l][ds[l]];

if (ucurrent[2] > a[2][ds[2]]/b[2][ds[2]])
ucurrent[2] = a[2][ds[2]]/b[2][ds[2]];

if (replication = 0)

81

{
fprintf(repO, "%f\n", averagerevenue);

}
arriveclass = 0;

} /*end if arrive class */
/* goto while not converged */

} /* end while not converged */

totaltime = totaltime + time;
printf(" \n \n replication = %d\n", replication);
printf("%f\t %f\t sees revenue: %f\t converg: %f\n",iteration, time, averagerevenue, converg);
classrate = classright / classtotal;
printf(" classright = %f\t", classright);
printf(" classtotal = %f\n", classtotal);
printf(" classrate = %6.6f\n", classrate);

fprintf(out, "%d\t", replication);
fprintf(out, "%f\t", time);
fprintf(out, "%f\t", iteration);
fprintf(out, "%f\t", converg);
fprintf(out, "%f\t", averagerevenue);
fprintf(out, "%f\t", classright);
fprintf(out, "%f\t", classtotal);
fprintf(out, "%f\t", classrate);
fprintf(out, "%f\t", classdptright);
fprintf(out, "%f\t", classdpttotal);
classrate = classdptright / classdpttotal;
fprintfl; out, "%f\n", classrate);

if (replication !=0)
avgrevcaIc[replication] = avgrevcalc[replication]+ averagerevenue;
if(ds[l] = l)
{ timedsl 1 = timedsl 1 + (time - oldtimel);
if(time<oldtimel)
{ printf("time: %f\t oldtimel: %f\t rep: %d\n",time, oldtimel, replication);
c=getcharO;}
oldtimel =time;}
if (ds[l] = 0)
{ timeds 10 = timeds 10 + (time - oldtime 1);
oldtimel =time;}
if(ds[l]=2)
{
timedsl2 = timedsl2 + (time - oldtimel);
oldtimel =time;}
if (ds[2] = 1)
{ timeds21 = timeds21 + (time - oldtime);
oldtime = time;}
if(ds[2]=0)
{ timeds20 = timeds20 + (time - oldtime);
oldtime = time;}
if(ds[2] = 2)
{ timeds22 = timeds22 + (time - oldtime);
oldtime = time;}

/* re-init6ialize before next replication */
time = 0;
totalrevenue = 0;
classright = 0;
classtotal = 0;
classdptright=0;
classdpttotal=0;
iteration = 0;
oldtime = 0;
oldtime 1=0;
} /* end for replication */

for(i = l;i<=30;i++)
avgrevcalc[0] = avgrevcalc[i] + avgrevcalc[0];
avgrevcalc[0]=avgrevcalc[0]/(replication-2);
fprintf(out, "\n mean average value: %f\n", avgrevcalc[0]);
for(i = l;i<=30;i++)

82

sigmatotal = sigmatotal + ((avgrevcalc[0]-avgrevcalc[i]) * (avgrevcalc[0]-avgrevcalc[i]));
sigmatotal=sigmatotal/30; /* variance */
fprintfi; out, "variance = %f\n", sigmatotal);
sigmatotal = sqrt(sigmatotal); /* std deviation */
fprintf(out, "standard deviation = %f\n", sigmatotal);
probdsl 1= timedsl 1/totaltime;
probdslO= timedsl O/totaltime;
probdsl 2= timedsl 2/totaltime;
probds21= timeds21/totaltime;
probds20= timeds20/totaltime;
probds22= timeds22/totaltime;
oldtimel = timedsl l+timedsl0+timedsl2;
oldtime = timeds21+timeds20+timeds22;

fprintf(out, "\n totaltime: %f\n", totaltime);
fprintf(out, "total time For dsl %f\t", oldtimel);
fprintf(out, "total time For ds2 %f\n \n", oldtime);
fprintf(out, "timedslO: %f\t", timedslO);
fprintf(out, "probdslO: %f\n", probdslO);
fprintf(out, "timedsl 1: %f\t", timedsl 1);
fprintf(out, "probdsl 1: %f\n", probdsl 1);
fprintf(out, "timedsl2: %f\t", timedsl2);
fprintf(out, "probdsl2: %f\n", probdsl2);
fprintf(out, "timeds20: %f\t", timeds20);
fprintf(out, "probds20: %f\n", probds20);
fprintf(out, "timeds21: %f\t", timeds21);
fprintf(out, "probds21: %f\n", probds21);
fprintf(out, "timeds22: %f\t", timeds22);
fprintf(out, "probds22: %f\n \n", probds22);
fclose(out);
fclose(classification);
fclose(repO);
fclose(classi);

} /* end main */

